Suppr超能文献

利用地理加权逻辑回归量化斐济钩端螺旋体病的环境和社会人口驱动因素的空间变异:一项建模研究。

Use of geographically weighted logistic regression to quantify spatial variation in the environmental and sociodemographic drivers of leptospirosis in Fiji: a modelling study.

机构信息

Department of Global Health, Research School of Population Health, The Australian National University, Canberra, ACT, Australia.

School of People, Environment and Planning, Massey University, Palmerston North, New Zealand; School of Geography, Earth Science and Environment, The University of the South Pacific, Suva, Fiji.

出版信息

Lancet Planet Health. 2018 May;2(5):e223-e232. doi: 10.1016/S2542-5196(18)30066-4.

Abstract

BACKGROUND

Leptospirosis is a globally important zoonotic disease, with complex exposure pathways that depend on interactions between human beings, animals, and the environment. Major drivers of outbreaks include flooding, urbanisation, poverty, and agricultural intensification. The intensity of these drivers and their relative importance vary between geographical areas; however, non-spatial regression methods are incapable of capturing the spatial variations. This study aimed to explore the use of geographically weighted logistic regression (GWLR) to provide insights into the ecoepidemiology of human leptospirosis in Fiji.

METHODS

We obtained field data from a cross-sectional community survey done in 2013 in the three main islands of Fiji. A blood sample obtained from each participant (aged 1-90 years) was tested for anti-Leptospira antibodies and household locations were recorded using GPS receivers. We used GWLR to quantify the spatial variation in the relative importance of five environmental and sociodemographic covariates (cattle density, distance to river, poverty rate, residential setting [urban or rural], and maximum rainfall in the wettest month) on leptospirosis transmission in Fiji. We developed two models, one using GWLR and one with standard logistic regression; for each model, the dependent variable was the presence or absence of anti-Leptospira antibodies. GWLR results were compared with results obtained with standard logistic regression, and used to produce a predictive risk map and maps showing the spatial variation in odds ratios (OR) for each covariate.

FINDINGS

The dataset contained location information for 2046 participants from 1922 households representing 81 communities. The Aikaike information criterion value of the GWLR model was 1935·2 compared with 1254·2 for the standard logistic regression model, indicating that the GWLR model was more efficient. Both models produced similar OR for the covariates, but GWLR also detected spatial variation in the effect of each covariate. Maximum rainfall had the least variation across space (median OR 1·30, IQR 1·27-1·35), and distance to river varied the most (1·45, 1·35-2·05). The predictive risk map indicated that the highest risk was in the interior of Viti Levu, and the agricultural region and southern end of Vanua Levu.

INTERPRETATION

GWLR provided a valuable method for modelling spatial heterogeneity of covariates for leptospirosis infection and their relative importance over space. Results of GWLR could be used to inform more place-specific interventions, particularly for diseases with strong environmental or sociodemographic drivers of transmission.

FUNDING

WHO, Australian National Health & Medical Research Council, University of Queensland, UK Medical Research Council, Chadwick Trust.

摘要

背景

钩端螺旋体病是一种具有全球重要性的人畜共患疾病,其暴露途径复杂,取决于人类、动物和环境之间的相互作用。疫情的主要驱动因素包括洪水、城市化、贫困和农业集约化。这些驱动因素的强度及其相对重要性因地理区域而异;然而,非空间回归方法无法捕捉到空间变化。本研究旨在探讨地理加权逻辑回归(GWLR)在斐济人类钩端螺旋体病生态流行病学中的应用。

方法

我们从 2013 年在斐济三个主要岛屿进行的一项横断面社区调查中获得了实地数据。从每个参与者(年龄 1-90 岁)采集的血液样本都进行了抗钩端螺旋体抗体检测,并使用 GPS 接收器记录了家庭住址。我们使用 GWLR 来量化五个环境和社会人口学协变量(牛密度、到河流的距离、贫困率、居住环境[城市或农村]和最湿月最大降雨量)对斐济钩端螺旋体病传播的相对重要性的空间变化。我们开发了两个模型,一个使用 GWLR,一个使用标准逻辑回归;对于每个模型,因变量是抗钩端螺旋体抗体的存在或不存在。GWLR 结果与标准逻辑回归的结果进行了比较,并用于生成预测风险图和显示每个协变量的优势比(OR)空间变化的地图。

结果

该数据集包含来自 1922 个家庭的 2046 名参与者的位置信息,代表 81 个社区。GWLR 模型的 Akaike 信息准则值为 1935.2,而标准逻辑回归模型为 1254.2,这表明 GWLR 模型更有效。两个模型对协变量的 OR 都产生了相似的结果,但 GWLR 还检测到每个协变量的影响存在空间变化。最大降雨量的空间变化最小(中位数 OR 1.30,IQR 1.27-1.35),而到河流的距离变化最大(1.45,1.35-2.05)。预测风险图表明,维提岛内陆、瓦努阿莱武岛的农业区和南端的风险最高。

解释

GWLR 为钩端螺旋体病感染的空间异质性及其在空间上的相对重要性提供了一种有价值的建模方法。GWLR 的结果可用于为更具针对性的干预措施提供信息,特别是对于具有强烈环境或社会人口学传播驱动因素的疾病。

资金

世界卫生组织、澳大利亚国家卫生与医学研究理事会、昆士兰大学、英国医学研究理事会、查德威克信托。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a02/5924768/7fd3eb26a955/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验