Suppr超能文献

用于 3D 干细胞培养的温度响应性透明质酸-PNIPAAm 水凝胶系统。

Thermoreversible Hyaluronic Acid-PNIPAAm Hydrogel Systems for 3D Stem Cell Culture.

机构信息

Department of Chemical and Biolomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.

Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA.

出版信息

Adv Healthc Mater. 2018 Jun;7(12):e1800225. doi: 10.1002/adhm.201800225. Epub 2018 May 2.

Abstract

Human pluripotent stem cells (hPSCs) offer considerable potential for biomedical applications including drug screening and cell replacement therapies. Clinical translation of hPSCs requires large quantities of high quality cells, so scalable methods for cell culture are needed. However, current methods are limited by scalability, the use of animal-derived components, and/or low expansion rates. A thermoresponsive 3D hydrogel for scalable hPSC expansion and differentiation into several defined lineages is recently reported. This system would benefit from increased control over material properties to further tune hPSC behavior, and here a scalable 3D biomaterial with the capacity to tune both the chemical and the mechanical properties is demonstrated to promote hPSC expansion under defined conditions. This 3D biomaterial, comprised of hyaluronic acid and poly(N-isopropolyacrylamide), has thermoresponsive properties that readily enable mixing with cells at low temperatures, physical encapsulation within the hydrogel upon elevation at 37 °C, and cell recovery upon cooling and reliquefaction. After optimization, the resulting biomaterial supports hPSC expansion over long cell culture periods while maintaining cell pluripotency. The capacity to modulate the mechanical and chemical properties of the hydrogel provides a new avenue to expand hPSCs for future therapeutic application.

摘要

人类多能干细胞(hPSCs)在药物筛选和细胞替代疗法等生物医学应用中具有巨大潜力。hPSCs 的临床转化需要大量高质量的细胞,因此需要可扩展的细胞培养方法。然而,目前的方法受到可扩展性、动物源性成分的使用以及/或低扩增率的限制。最近报道了一种用于可扩展 hPSC 扩增和分化为几种特定谱系的热响应性 3D 水凝胶。为了进一步调整 hPSC 的行为,该系统将受益于对材料特性的更多控制,这里展示了一种具有调节化学和机械性能能力的可扩展 3D 生物材料,以在定义的条件下促进 hPSC 扩增。这种由透明质酸和聚(N-异丙基丙烯酰胺)组成的 3D 生物材料具有热响应特性,可在低温下与细胞混合,在 37°C 时在水凝胶内物理封装,并在冷却和重新液化时回收细胞。经过优化,所得生物材料支持 hPSC 在长细胞培养期间扩增,同时保持细胞多能性。调节水凝胶机械和化学性质的能力为未来治疗应用扩展 hPSCs 提供了新途径。

相似文献

1
Thermoreversible Hyaluronic Acid-PNIPAAm Hydrogel Systems for 3D Stem Cell Culture.
Adv Healthc Mater. 2018 Jun;7(12):e1800225. doi: 10.1002/adhm.201800225. Epub 2018 May 2.
2
A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation.
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):E5039-48. doi: 10.1073/pnas.1309408110. Epub 2013 Nov 18.
4
The design of a thermoresponsive surface for the continuous culture of human pluripotent stem cells.
Biomaterials. 2019 Nov;221:119411. doi: 10.1016/j.biomaterials.2019.119411. Epub 2019 Aug 7.
5
A scalable and tunable thermoreversible polymer for 3D human pluripotent stem cell biomanufacturing.
iScience. 2022 Aug 25;25(10):104971. doi: 10.1016/j.isci.2022.104971. eCollection 2022 Oct 21.
6
Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering.
Biomaterials. 2009 Dec;30(36):6844-53. doi: 10.1016/j.biomaterials.2009.08.058. Epub 2009 Sep 26.
8
Hydrogel-Based Bioprocess for Scalable Manufacturing of Human Pluripotent Stem Cell-Derived Neural Stem Cells.
ACS Appl Mater Interfaces. 2018 Sep 5;10(35):29238-29250. doi: 10.1021/acsami.8b05780. Epub 2018 Aug 22.
9
Engineered peptide modified hydrogel platform for propagation of human pluripotent stem cells.
Acta Biomater. 2020 Sep 1;113:228-239. doi: 10.1016/j.actbio.2020.06.034. Epub 2020 Jun 27.

引用本文的文献

1
Synthetic thermoresponsive scaffolds for the expansion and differentiation of human pluripotent stem cells into cardiomyocytes.
RSC Adv. 2025 Sep 2;15(38):31296-31312. doi: 10.1039/d5ra04674b. eCollection 2025 Aug 29.
2
Improving three-dimensional human pluripotent cell culture efficiency via surface molecule coating.
Front Chem Eng. 2022;4. doi: 10.3389/fceng.2022.1031395. Epub 2022 Oct 20.
3
SKOV-3 Cell Aggregates on a Microfluidic Chip with a Thermoresponsive Hydrogel as a Culture Scaffold for DOX Assessment.
ACS Omega. 2025 Apr 9;10(15):14972-14979. doi: 10.1021/acsomega.4c10301. eCollection 2025 Apr 22.
4
Organoids meet microfluidics: recent advancements, challenges, and future of organoids-on-chip.
In Vitro Model. 2025 Mar 5;4(1):71-88. doi: 10.1007/s44164-025-00086-7. eCollection 2025 Feb.
5
4D printing polymeric biomaterials for adaptive tissue regeneration.
Bioact Mater. 2025 Feb 22;48:370-399. doi: 10.1016/j.bioactmat.2025.01.033. eCollection 2025 Jun.
6
Tumor organoids in cancer medicine: from model systems to natural compound screening.
Pharm Biol. 2025 Dec;63(1):89-109. doi: 10.1080/13880209.2025.2458149. Epub 2025 Feb 1.
7
Anoikis in cell fate, physiopathology, and therapeutic interventions.
MedComm (2020). 2024 Sep 15;5(10):e718. doi: 10.1002/mco2.718. eCollection 2024 Oct.
10
A Spontaneous In Situ Thiol-Ene Crosslinking Hydrogel with Thermo-Responsive Mechanical Properties.
Polymers (Basel). 2024 May 1;16(9):1264. doi: 10.3390/polym16091264.

本文引用的文献

1
Engineering Xeno-Free Microcarriers with Recombinant Vitronectin, Albumin and UV Irradiation for Human Pluripotent Stem Cell Bioprocessing.
ACS Biomater Sci Eng. 2017 Aug 14;3(8):1510-1518. doi: 10.1021/acsbiomaterials.6b00253. Epub 2016 Jul 25.
2
Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association.
Circulation. 2017 Mar 7;135(10):e146-e603. doi: 10.1161/CIR.0000000000000485. Epub 2017 Jan 25.
4
Designer matrices for intestinal stem cell and organoid culture.
Nature. 2016 Nov 24;539(7630):560-564. doi: 10.1038/nature20168. Epub 2016 Nov 16.
5
Neural tube morphogenesis in synthetic 3D microenvironments.
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):E6831-E6839. doi: 10.1073/pnas.1603529113. Epub 2016 Oct 14.
6
The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel.
Biomaterials. 2015 Oct;67:297-307. doi: 10.1016/j.biomaterials.2015.07.042. Epub 2015 Jul 23.
7
cAMP and EPAC Signaling Functionally Replace OCT4 During Induced Pluripotent Stem Cell Reprogramming.
Mol Ther. 2015 May;23(5):952-963. doi: 10.1038/mt.2015.28. Epub 2015 Feb 10.
8
Cellular mechanotransduction: stiffness does matter.
Nat Mater. 2014 Oct;13(10):918-20. doi: 10.1038/nmat4094.
9
Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications.
Eur J Pharm Biopharm. 2014 Nov;88(3):575-85. doi: 10.1016/j.ejpb.2014.07.005. Epub 2014 Aug 1.
10
Tissue engineering and regenerative medicine: a year in review.
Tissue Eng Part B Rev. 2014 Feb;20(1):1-16. doi: 10.1089/ten.TEB.2013.0668.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验