School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
FEBS J. 2018 Aug;285(15):2762-2784. doi: 10.1111/febs.14493. Epub 2018 May 17.
Actin filament assembly contributes to the endocytic pathway pleiotropically, with active roles in clathrin-dependent and clathrin-independent endocytosis as well as subsequent endosomal trafficking. Endocytosis comprises a series of dynamic events, including the initiation of membrane curvature, bud invagination, vesicle abscission and subsequent vesicular transport. The ultimate success of endocytosis requires the coordinated activities of proteins that trigger actin polymerization, recruit actin-binding proteins (ABPs) and organize endocytic proteins (EPs) that promote membrane curvature through molecular crowding or scaffolding mechanisms. A particularly interesting phenomenon is that multiple EPs and ABPs contain a substantial percentage of intrinsically disordered regions (IDRs), which can contribute to protein coacervation and phase separation. In addition, intrinsically disordered proteins (IDPs) frequently contain sites for post-translational modifications (PTMs) such as phosphorylation, and these modifications exhibit a high preference for IDR residues [Groban ES et al. (2006) PLoS Comput Biol 2, e32]. PTMs are implicated in regulating protein function by modulating the protein conformation, protein-protein interactions and the transition between order and disorder states of IDPs. The molecular mechanisms by which IDRs of ABPs and EPs fine-tune actin assembly and endocytosis remain mostly unexplored and elusive. In this review, we analyze protein sequences of budding yeast EPs and ABPs, and discuss the potential underlying mechanisms for regulating endocytosis and actin assembly through the emerging concept of IDR-mediated protein multivalency, coacervation, and phase transition, with an emphasis on the phospho-regulation of IDRs. Finally, we summarize the current understanding of how these mechanisms coordinate actin cytoskeleton assembly and membrane curvature formation during endocytosis in budding yeast.
肌动蛋白丝组装对胞吞作用具有多效性,在网格蛋白依赖和网格蛋白非依赖的胞吞作用以及随后的内体运输中发挥积极作用。胞吞作用包括一系列动态事件,包括膜曲率的起始、泡囊内陷、囊泡分离以及随后的囊泡运输。胞吞作用的最终成功需要触发肌动蛋白聚合、募集肌动蛋白结合蛋白 (ABPs) 和组织内吞蛋白 (EPs) 的蛋白质的协调活动,这些蛋白通过分子拥挤或支架机制促进膜曲率。一个特别有趣的现象是,多个 EPs 和 ABPs 含有大量的无序区域 (IDRs),这些区域可以促进蛋白质凝聚和相分离。此外,无序蛋白 (IDPs) 经常含有翻译后修饰 (PTMs) 的位点,如磷酸化,这些修饰对 IDR 残基表现出很高的偏好[Groban ES 等人。(2006) PLoS Comput Biol 2, e32]。PTMs 通过调节蛋白质构象、蛋白质-蛋白质相互作用以及 IDPs 的有序和无序状态之间的转变来参与调节蛋白质功能。ABPs 和 EPs 的 IDRs 微调肌动蛋白组装和胞吞作用的分子机制在很大程度上仍未得到探索和难以捉摸。在这篇综述中,我们分析了芽殖酵母 EPs 和 ABPs 的蛋白质序列,并讨论了通过新兴的 IDR 介导的蛋白质多价性、凝聚和相变概念来调节内吞作用和肌动蛋白组装的潜在机制,重点讨论了 IDRs 的磷酸化调节。最后,我们总结了目前对内吞作用过程中肌动蛋白细胞骨架组装和膜曲率形成的这些机制如何协调的理解。