Corvo Ileana, Ferraro Florencia, Merlino Alicia, Zuberbühler Kathrin, O'Donoghue Anthony J, Pastro Lucía, Pi-Denis Natalia, Basika Tatiana, Roche Leda, McKerrow James H, Craik Charles S, Caffrey Conor R, Tort José F
Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
Laboratorio de Química Teórica y Computacional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
Front Mol Biosci. 2018 Apr 19;5:40. doi: 10.3389/fmolb.2018.00040. eCollection 2018.
Cysteine proteases are widespread in all life kingdoms, being central to diverse physiological processes based on a broad range of substrate specificity. Paralogous cathepsin L proteases are essential to parasite invasion, tissue migration and reproduction. In spite of similarities in their overall sequence and structure, these enzymes often exhibit different substrate specificity. These preferences are principally determined by the amino acid composition of the active site's S subsite (pocket) of the enzyme that interacts with the substrate P residue (Schetcher and Berger nomenclature). Although secreted CL1 accommodates aliphatic residues in the S pocket, CL2 is also efficient in cleaving proline in that position. To understand these differences, we engineered the CL1 S subsite at three amino acid positions to render it identical to that present in CL2. The substitutions did not produce the expected increment in proline accommodation in P Rather, they decreased the enzyme's catalytic efficiency toward synthetic peptides. Nonetheless, a change in the P specificity was associated with the mutation of Leu67 to Tyr, a hinge residue between the S and S subsites that contributes to the accommodation of Gly in S. Molecular dynamic simulations highlighted changes in the spatial distribution and secondary structure of the S and S pockets of the mutant CL1 enzymes. The reduced affinity and catalytic efficiency of the mutant enzymes may be due to a narrowing of the active site cleft that hinders the accommodation of substrates. Because the variations in the enzymatic activity measured could not be exclusively allocated to those residues lining the active site, other more external positions might modulate enzyme conformation, and, therefore, catalytic activity.
半胱氨酸蛋白酶广泛存在于所有生命王国中,基于广泛的底物特异性,它们在多种生理过程中起着核心作用。同源组织蛋白酶L对寄生虫的入侵、组织迁移和繁殖至关重要。尽管这些酶在整体序列和结构上存在相似性,但它们通常表现出不同的底物特异性。这些偏好主要由与底物P残基相互作用的酶活性位点S亚位点(口袋)的氨基酸组成决定(Schetcher和Berger命名法)。尽管分泌型CL1在S口袋中容纳脂肪族残基,但CL2在该位置切割脯氨酸时也很有效。为了理解这些差异,我们在三个氨基酸位置对CL1的S亚位点进行了工程改造,使其与CL2中的相同。这些替换并没有在P中产生预期的脯氨酸容纳量增加。相反,它们降低了酶对合成肽的催化效率。尽管如此,P特异性的变化与Leu67突变为Tyr有关,Leu67是S和S'亚位点之间的一个铰链残基,有助于在S'中容纳Gly。分子动力学模拟突出了突变型CL1酶的S和S'口袋的空间分布和二级结构的变化。突变酶亲和力和催化效率的降低可能是由于活性位点裂隙变窄,阻碍了底物的容纳。由于所测量的酶活性变化不能完全归因于活性位点内衬的那些残基,其他更外部的位置可能会调节酶的构象,从而调节催化活性。