Suppr超能文献

肺泡气中挥发性有机化合物(VOCs)分析可检测胰腺导管腺癌。

Pancreatic ductal adenocarcinoma can be detected by analysis of volatile organic compounds (VOCs) in alveolar air.

机构信息

Department of Diagnostics and Public Health - Occupational Medicine Unit, University of Verona, Policlinico Borgo Roma, Piazzale LA Scuro 10, 37134, Verona, Italy.

Epidemiology and Biostatistics Unit, Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy.

出版信息

BMC Cancer. 2018 May 4;18(1):529. doi: 10.1186/s12885-018-4452-0.

Abstract

BACKGROUND

In the last decade many studies showed that the exhaled breath of subjects suffering from several pathological conditions has a peculiar volatile organic compound (VOC) profile. The objective of the present work was to analyse the VOCs in alveolar air to build a diagnostic tool able to identify the presence of pancreatic ductal adenocarcinoma in patients with histologically confirmed disease.

METHODS

The concentration of 92 compounds was measured in the end-tidal breath of 65 cases and 102 controls. VOCs were measured with an ion-molecule reaction mass spectrometry. To distinguish between subjects with pancreatic adenocarcinomas and controls, an iterated Least Absolute Shrinkage and Selection Operator multivariate Logistic Regression model was elaborated.

RESULTS

The final predictive model, based on 10 VOCs, significantly and independently associated with the outcome had a sensitivity and specificity of 100 and 84% respectively, and an area under the ROC curve of 0.99. For further validation, the model was run on 50 other subjects: 24 cases and 26 controls; 23 patients with histological diagnosis of pancreatic adenocarcinomas and 25 controls were correctly identified by the model.

CONCLUSIONS

Pancreatic cancer is able to alter the concentration of some molecules in the blood and hence of VOCs in the alveolar air in equilibrium. The detection and statistical rendering of alveolar VOC composition can be useful for the clinical diagnostic approach of pancreatic neoplasms with excellent sensitivity and specificity.

摘要

背景

在过去的十年中,许多研究表明,患有多种病理状况的受试者呼出的呼吸具有特殊的挥发性有机化合物 (VOC) 特征。本研究的目的是分析肺泡空气中的 VOC,以构建一种能够识别组织学证实患有胰腺导管腺癌患者的诊断工具。

方法

在 65 例病例和 102 例对照中测量了 92 种化合物在终末呼吸中的浓度。使用离子-分子反应质谱法测量 VOCs。为了区分患有胰腺腺癌的患者和对照者,我们制定了迭代最小绝对收缩和选择算子多变量逻辑回归模型。

结果

基于 10 种 VOC 的最终预测模型与结果显著且独立相关,其敏感性和特异性分别为 100%和 84%,ROC 曲线下面积为 0.99。为了进一步验证,我们在另外 50 名患者中运行了该模型:24 例病例和 26 例对照;23 例组织学诊断为胰腺腺癌患者和 25 例对照者被模型正确识别。

结论

胰腺癌能够改变血液中某些分子的浓度,从而改变平衡状态下肺泡空气中 VOC 的浓度。肺泡 VOC 组成的检测和统计呈现对于胰腺肿瘤的临床诊断方法具有极好的敏感性和特异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7118/5935919/245bb9c76f7f/12885_2018_4452_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验