Rafegas Ivet, Vanrell Maria
Computer Vision Center, Universitat Autònoma de Barcelona, Edifici O, Campus UAB-Bellaterra, Barcelona, Spain.
Vision Res. 2018 Oct;151:7-17. doi: 10.1016/j.visres.2018.03.010. Epub 2018 May 11.
Convolutional Neural Networks have been proposed as suitable frameworks to model biological vision. Some of these artificial networks showed representational properties that rival primate performances in object recognition. In this paper we explore how color is encoded in a trained artificial network. It is performed by estimating a color selectivity index for each neuron, which allows us to describe the neuron activity to a color input stimuli. The index allows us to classify whether they are color selective or not and if they are of a single or double color. We have determined that all five convolutional layers of the network have a large number of color selective neurons. Color opponency clearly emerges in the first layer, presenting 4 main axes (Black-White, Red-Cyan, Blue-Yellow and Magenta-Green), but this is reduced and rotated as we go deeper into the network. In layer 2 we find a denser hue sampling of color neurons and opponency is reduced almost to one new main axis, the Bluish-Orangish coinciding with the dataset bias. In layers 3, 4 and 5 color neurons are similar amongst themselves, presenting different type of neurons that detect specific colored objects (e.g., orangish faces), specific surrounds (e.g., blue sky) or specific colored or contrasted object-surround configurations (e.g. blue blob in a green surround). Overall, our work concludes that color and shape representation are successively entangled through all the layers of the studied network, revealing certain parallelisms with the reported evidences in primate brains that can provide useful insight into intermediate hierarchical spatio-chromatic representations.
卷积神经网络已被提议作为模拟生物视觉的合适框架。其中一些人工网络展现出在物体识别方面可与灵长类动物表现相媲美的表征特性。在本文中,我们探究了在一个经过训练的人工网络中颜色是如何被编码的。这是通过估计每个神经元的颜色选择性指数来实现的,该指数使我们能够描述神经元对颜色输入刺激的活动。这个指数让我们能够对它们是否具有颜色选择性以及是单颜色还是双颜色进行分类。我们已经确定该网络的所有五个卷积层都有大量颜色选择性神经元。颜色对立在第一层中清晰地显现出来,呈现出4个主要轴(黑 - 白、红 - 青、蓝 - 黄和品红 - 绿),但随着我们深入网络,这种情况会减少并发生旋转。在第二层中,我们发现颜色神经元的色调采样更密集,颜色对立几乎减少到一个新的主轴,蓝橙色与数据集偏差一致。在第三、第四和第五层中,颜色神经元彼此相似,呈现出不同类型的神经元,这些神经元可以检测特定颜色的物体(例如橙色的脸)、特定的周围环境(例如蓝天)或特定颜色或对比的物体 - 周围环境配置(例如绿色背景中的蓝色斑点)。总体而言,我们的工作得出结论,颜色和形状表征在研究的网络的所有层中相继纠缠在一起,揭示了与灵长类大脑中报道的证据的某些平行性,这可以为中间层次的空间 - 色度表征提供有用的见解。