Suppr超能文献

一种使用质谱分子网络进行高通量、非靶向森林群落代谢组学的方案。

A protocol for high-throughput, untargeted forest community metabolomics using mass spectrometry molecular networks.

作者信息

Sedio Brian E, Boya P Cristopher A, Rojas Echeverri Juan Camilo

机构信息

Smithsonian Tropical Research Institute Apartado 0843-03092 Balboa, Ancón Republic of Panama.

Center for Biodiversity and Drug Discovery Instituto de Investigaciones Científicas y Servicios de Alta Tecnología Apartado 0843-01103 Ciudad del Saber Republic of Panama.

出版信息

Appl Plant Sci. 2018 Apr 2;6(3):e1033. doi: 10.1002/aps3.1033. eCollection 2018 Mar.

Abstract

PREMISE OF THE STUDY

We describe a field collection, sample processing, and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) instrumental and bioinformatics method developed for untargeted metabolomics of plant tissue and suitable for molecular networking applications.

METHODS AND RESULTS

A total of 613 leaf samples from 204 tree species was collected in the field and analyzed using UHPLC-MS/MS. Matching of molecular fragmentation spectra generated over 125,000 consensus spectra representing unique molecular structures, 26,410 of which were linked to at least one structurally similar compound.

CONCLUSIONS

Our workflow is able to generate molecular networks of hundreds of thousands of compounds representing broad classes of plant secondary chemistry and a wide range of molecular masses, from 100 to 2500 daltons, making possible large-scale comparative metabolomics, as well as studies of chemical community ecology and macroevolution in plants.

摘要

研究前提

我们描述了一种为植物组织的非靶向代谢组学开发的、适用于分子网络应用的野外采集、样品处理以及超高效液相色谱 - 串联质谱(UHPLC-MS/MS)仪器和生物信息学方法。

方法与结果

在野外共采集了来自204个树种的613片叶子样本,并使用UHPLC-MS/MS进行分析。分子碎片光谱匹配产生了超过125,000个代表独特分子结构的共有光谱,其中26,410个与至少一种结构相似的化合物相关联。

结论

我们的工作流程能够生成代表植物次生化学广泛类别和从100到2500道尔顿广泛分子量范围的数十万种化合物的分子网络,从而使大规模比较代谢组学以及植物化学群落生态学和宏观进化研究成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cff/5895185/2660cf17aad2/APS3-6-e1033-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验