Suppr超能文献

三维人肺组织工程模型用于研究甲型流感感染。

A Three-Dimensional Human Tissue-Engineered Lung Model to Study Influenza A Infection.

机构信息

1 School of Chemical Engineering, Oklahoma State University , Stillwater, Oklahoma.

2 Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma.

出版信息

Tissue Eng Part A. 2018 Oct;24(19-20):1468-1480. doi: 10.1089/ten.TEA.2017.0449. Epub 2018 Jun 29.

Abstract

Influenza A virus (IAV) claims ∼250,000-500,000 lives annually worldwide. Currently, there are a few in vitro models available to study IAV immunopathology. Monolayer cultures of cell lines and primary lung cells (two-dimensional [2D] cell culture) is the most commonly used tool, however, this system does not have the in vivo-like structure of the lung and immune responses to IAV as it lacks the three-dimensional (3D) tissue structure. To recapitulate the lung physiology in vitro, a system that contains multiple cell types within a 3D environment that allows cell movement and interaction would provide a critical tool. In this study, as a first step in designing a 3D-Human Tissue-Engineered Lung Model (3D-HTLM), we describe the 3D culture of primary human small airway epithelial cells (HSAEpCs) and determined the immunophenotype of this system in response to IAV infections. We constructed a 3D chitosan-collagen scaffold and cultured HSAEpCs on these scaffolds at air-liquid interface (ALI). These 3D cultures were compared with 2D-cultured HSAEpCs for viability, morphology, marker protein expression, and cell differentiation. Results showed that the 3D-cultured HSAEpCs at ALI yielded maximum viable cells and morphologically resembled the in vivo lower airway epithelium. There were also significant increases in aquaporin-5 and cytokeratin-14 expression for HSAEpCs cultured in 3D compared to 2D. The 3D culture system was used to study the infection of HSAEpCs with two major IAV strains, H1N1 and H3N2. The HSAEpCs showed distinct changes in marker protein expression, both at mRNA and protein levels, and the release of proinflammatory cytokines. This study is the first step in the development of the 3D-HTLM, which will have wide applicability in studying pulmonary pathophysiology and therapeutics development.

摘要

甲型流感病毒(IAV)每年在全球范围内导致约 25 万至 50 万人死亡。目前,有几种体外模型可用于研究 IAV 免疫病理学。单层细胞系和原代肺细胞培养(二维[2D]细胞培养)是最常用的工具,然而,由于缺乏三维(3D)组织结构,该系统不具有与体内相似的肺结构和对 IAV 的免疫反应。为了在体外再现肺生理学,一种包含多种细胞类型并具有允许细胞运动和相互作用的 3D 环境的系统将提供一个关键工具。在这项研究中,作为设计 3D 人组织工程肺模型(3D-HTLM)的第一步,我们描述了原代人小气道上皮细胞(HSAEpC)的 3D 培养,并确定了该系统对 IAV 感染的免疫表型。我们构建了 3D 壳聚糖-胶原支架,并在气液界面(ALI)上培养 HSAEpC 于这些支架上。将这些 3D 培养物与 2D 培养的 HSAEpC 进行比较,以评估其活力、形态、标记蛋白表达和细胞分化。结果表明,在 ALI 培养的 3D 培养的 HSAEpC 产生了最大数量的存活细胞,并且形态上类似于体内下呼吸道上皮。与 2D 培养相比,3D 培养的 HSAEpC 的水通道蛋白-5 和细胞角蛋白-14 的表达也显著增加。该 3D 培养系统用于研究两种主要的 IAV 株 H1N1 和 H3N2 对 HSAEpC 的感染。HSAEpC 的标记蛋白表达在 mRNA 和蛋白质水平上都发生了明显变化,并且释放了促炎细胞因子。这项研究是开发 3D-HTLM 的第一步,该模型将在研究肺病理生理学和治疗药物开发方面具有广泛的适用性。

相似文献

9
Infection with influenza virus induces IL-33 in murine lungs.流感病毒感染诱导小鼠肺部的 IL-33 产生。
Am J Respir Cell Mol Biol. 2011 Dec;45(6):1125-32. doi: 10.1165/rcmb.2010-0516OC. Epub 2011 Jun 3.

引用本文的文献

1
3D Tissue Culture Model for Virology Studies.用于病毒学研究的3D组织培养模型。
Methods Mol Biol. 2025;2940:173-185. doi: 10.1007/978-1-0716-4615-1_16.

本文引用的文献

2
Lung Organoids and Their Use To Study Cell-Cell Interaction.肺类器官及其在研究细胞间相互作用中的应用。
Curr Pathobiol Rep. 2017;5(2):223-231. doi: 10.1007/s40139-017-0137-7. Epub 2017 Apr 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验