Suppr超能文献

三维人肺组织工程模型用于研究甲型流感感染。

A Three-Dimensional Human Tissue-Engineered Lung Model to Study Influenza A Infection.

机构信息

1 School of Chemical Engineering, Oklahoma State University , Stillwater, Oklahoma.

2 Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma.

出版信息

Tissue Eng Part A. 2018 Oct;24(19-20):1468-1480. doi: 10.1089/ten.TEA.2017.0449. Epub 2018 Jun 29.

Abstract

Influenza A virus (IAV) claims ∼250,000-500,000 lives annually worldwide. Currently, there are a few in vitro models available to study IAV immunopathology. Monolayer cultures of cell lines and primary lung cells (two-dimensional [2D] cell culture) is the most commonly used tool, however, this system does not have the in vivo-like structure of the lung and immune responses to IAV as it lacks the three-dimensional (3D) tissue structure. To recapitulate the lung physiology in vitro, a system that contains multiple cell types within a 3D environment that allows cell movement and interaction would provide a critical tool. In this study, as a first step in designing a 3D-Human Tissue-Engineered Lung Model (3D-HTLM), we describe the 3D culture of primary human small airway epithelial cells (HSAEpCs) and determined the immunophenotype of this system in response to IAV infections. We constructed a 3D chitosan-collagen scaffold and cultured HSAEpCs on these scaffolds at air-liquid interface (ALI). These 3D cultures were compared with 2D-cultured HSAEpCs for viability, morphology, marker protein expression, and cell differentiation. Results showed that the 3D-cultured HSAEpCs at ALI yielded maximum viable cells and morphologically resembled the in vivo lower airway epithelium. There were also significant increases in aquaporin-5 and cytokeratin-14 expression for HSAEpCs cultured in 3D compared to 2D. The 3D culture system was used to study the infection of HSAEpCs with two major IAV strains, H1N1 and H3N2. The HSAEpCs showed distinct changes in marker protein expression, both at mRNA and protein levels, and the release of proinflammatory cytokines. This study is the first step in the development of the 3D-HTLM, which will have wide applicability in studying pulmonary pathophysiology and therapeutics development.

摘要

甲型流感病毒(IAV)每年在全球范围内导致约 25 万至 50 万人死亡。目前,有几种体外模型可用于研究 IAV 免疫病理学。单层细胞系和原代肺细胞培养(二维[2D]细胞培养)是最常用的工具,然而,由于缺乏三维(3D)组织结构,该系统不具有与体内相似的肺结构和对 IAV 的免疫反应。为了在体外再现肺生理学,一种包含多种细胞类型并具有允许细胞运动和相互作用的 3D 环境的系统将提供一个关键工具。在这项研究中,作为设计 3D 人组织工程肺模型(3D-HTLM)的第一步,我们描述了原代人小气道上皮细胞(HSAEpC)的 3D 培养,并确定了该系统对 IAV 感染的免疫表型。我们构建了 3D 壳聚糖-胶原支架,并在气液界面(ALI)上培养 HSAEpC 于这些支架上。将这些 3D 培养物与 2D 培养的 HSAEpC 进行比较,以评估其活力、形态、标记蛋白表达和细胞分化。结果表明,在 ALI 培养的 3D 培养的 HSAEpC 产生了最大数量的存活细胞,并且形态上类似于体内下呼吸道上皮。与 2D 培养相比,3D 培养的 HSAEpC 的水通道蛋白-5 和细胞角蛋白-14 的表达也显著增加。该 3D 培养系统用于研究两种主要的 IAV 株 H1N1 和 H3N2 对 HSAEpC 的感染。HSAEpC 的标记蛋白表达在 mRNA 和蛋白质水平上都发生了明显变化,并且释放了促炎细胞因子。这项研究是开发 3D-HTLM 的第一步,该模型将在研究肺病理生理学和治疗药物开发方面具有广泛的适用性。

相似文献

1
A Three-Dimensional Human Tissue-Engineered Lung Model to Study Influenza A Infection.
Tissue Eng Part A. 2018 Oct;24(19-20):1468-1480. doi: 10.1089/ten.TEA.2017.0449. Epub 2018 Jun 29.
5
H3N2 influenza virus infection enhances oncostatin M expression in human nasal epithelium.
Exp Cell Res. 2018 Oct 15;371(2):322-329. doi: 10.1016/j.yexcr.2018.08.022. Epub 2018 Aug 22.
6
Cellular immune response to human influenza viruses differs between H1N1 and H3N2 subtypes in the ferret lung.
PLoS One. 2018 Sep 7;13(9):e0202675. doi: 10.1371/journal.pone.0202675. eCollection 2018.
7
8
Intranasal delivery of Duox2 DNA using cationic polymer can prevent acute influenza A viral infection in vivo lung.
Appl Microbiol Biotechnol. 2018 Jan;102(1):105-115. doi: 10.1007/s00253-017-8512-1. Epub 2017 Sep 21.
9
Infection with influenza virus induces IL-33 in murine lungs.
Am J Respir Cell Mol Biol. 2011 Dec;45(6):1125-32. doi: 10.1165/rcmb.2010-0516OC. Epub 2011 Jun 3.
10
Innate immune response to H3N2 and H1N1 influenza virus infection in a human lung organ culture model.
Virology. 2010 Jan 20;396(2):178-88. doi: 10.1016/j.virol.2009.10.016. Epub 2009 Nov 12.

引用本文的文献

1
3D Tissue Culture Model for Virology Studies.
Methods Mol Biol. 2025;2940:173-185. doi: 10.1007/978-1-0716-4615-1_16.
2
First contact: an interdisciplinary guide into decoding H5N1 influenza virus interactions with glycosaminoglycans in 3D respiratory cell models.
Front Cell Infect Microbiol. 2025 May 15;15:1596955. doi: 10.3389/fcimb.2025.1596955. eCollection 2025.
4
Blood myeloid cells differentiate to lung resident cells and respond to pathogen stimuli in a 3D human tissue-engineered lung model.
Front Bioeng Biotechnol. 2023 Jul 7;11:1212230. doi: 10.3389/fbioe.2023.1212230. eCollection 2023.
5
Harnessing three-dimensional (3D) cell culture models for pulmonary infections: State of the art and future directions.
Naunyn Schmiedebergs Arch Pharmacol. 2023 Nov;396(11):2861-2880. doi: 10.1007/s00210-023-02541-2. Epub 2023 Jun 2.
7
The pro-inflammatory response to influenza A virus infection is fueled by endothelial cells.
Life Sci Alliance. 2023 Apr 18;6(7). doi: 10.26508/lsa.202201837. Print 2023 Jul.
8
3D bioprinting and its innovative approach for biomedical applications.
MedComm (2020). 2022 Dec 24;4(1):e194. doi: 10.1002/mco2.194. eCollection 2023 Feb.
9
3D engineered tissue models for studying human-specific infectious viral diseases.
Bioact Mater. 2022 Sep 22;21:576-594. doi: 10.1016/j.bioactmat.2022.09.010. eCollection 2023 Mar.
10
3D tissue-engineered lung models to study immune responses following viral infections of the small airways.
Stem Cell Res Ther. 2022 Sep 7;13(1):464. doi: 10.1186/s13287-022-03134-1.

本文引用的文献

1
Temporal dynamics of ovine airway epithelial cell differentiation at an air-liquid interface.
PLoS One. 2017 Jul 26;12(7):e0181583. doi: 10.1371/journal.pone.0181583. eCollection 2017.
2
Lung Organoids and Their Use To Study Cell-Cell Interaction.
Curr Pathobiol Rep. 2017;5(2):223-231. doi: 10.1007/s40139-017-0137-7. Epub 2017 Apr 24.
3
Role of human rhinovirus in triggering human airway epithelial-mesenchymal transition.
Respir Res. 2017 May 30;18(1):110. doi: 10.1186/s12931-017-0595-9.
5
Generation of Monoclonal Antibodies against Immunoglobulin Proteins of the Domestic Ferret ().
J Immunol Res. 2017;2017:5874572. doi: 10.1155/2017/5874572. Epub 2017 Feb 14.
6
Proteomic Analysis of Differential Expression of Cellular Proteins in Response to Avian H9N2 Virus Infection of A549 Cells.
Front Microbiol. 2016 Dec 15;7:1962. doi: 10.3389/fmicb.2016.01962. eCollection 2016.
7
Involvement of Igf1r in Bronchiolar Epithelial Regeneration: Role during Repair Kinetics after Selective Club Cell Ablation.
PLoS One. 2016 Nov 18;11(11):e0166388. doi: 10.1371/journal.pone.0166388. eCollection 2016.
9
Cells and Culture Systems Used to Model the Small Airway Epithelium.
Lung. 2016 Jun;194(3):419-28. doi: 10.1007/s00408-016-9875-2. Epub 2016 Apr 12.
10
Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses.
PLoS One. 2016 Apr 12;11(4):e0153671. doi: 10.1371/journal.pone.0153671. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验