Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA.
Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA.
Nat Commun. 2018 May 9;9(1):1837. doi: 10.1038/s41467-018-04221-9.
Malaria liver stages represent an ideal therapeutic target with a bottleneck in parasite load and reduced clinical symptoms; however, current in vitro pre-erythrocytic (PE) models for Plasmodium vivax and P. falciparum lack the efficiency necessary for rapid identification and effective evaluation of new vaccines and drugs, especially targeting late liver-stage development and hypnozoites. Herein we report the development of a 384-well plate culture system using commercially available materials, including cryopreserved primary human hepatocytes. Hepatocyte physiology is maintained for at least 30 days and supports development of P. vivax hypnozoites and complete maturation of P. vivax and P. falciparum schizonts. Our multimodal analysis in antimalarial therapeutic research identifies important PE inhibition mechanisms: immune antibodies against sporozoite surface proteins functionally inhibit liver stage development and ion homeostasis is essential for schizont and hypnozoite viability. This model can be implemented in laboratories in disease-endemic areas to accelerate vaccine and drug discovery research.
疟原虫肝脏阶段是一个理想的治疗靶点,寄生虫负荷和临床症状减少;然而,目前用于间日疟原虫和恶性疟原虫的体外原虫前期(PE)模型缺乏快速鉴定和有效评估新疫苗和药物的必要效率,特别是针对晚期肝脏阶段发育和休眠子。本文报告了一种使用商业上可获得的材料,包括冷冻保存的原代人肝细胞,开发的 384 孔板培养系统。肝细胞生理学至少维持 30 天,并支持间日疟原虫休眠子的发育和间日疟原虫和恶性疟原虫裂殖体的完全成熟。我们在抗疟治疗研究中的多模式分析确定了重要的 PE 抑制机制:针对孢子表面蛋白的免疫抗体在功能上抑制肝脏阶段的发育,离子动态平衡对于裂殖体和休眠子的生存力至关重要。该模型可在疾病流行地区的实验室中实施,以加速疫苗和药物发现研究。