Suppr超能文献

使用扩展卡尔曼滤波器估计逐片运动的集成功能磁共振成像预处理框架

Integrated fMRI Preprocessing Framework Using Extended Kalman Filter for Estimation of Slice-Wise Motion.

作者信息

Pinsard Basile, Boutin Arnaud, Doyon Julien, Benali Habib

机构信息

Unité de Neuroimagerie Fonctionelle, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.

UMR7371 Laboratoire d'Imagerie Biomédicale, Paris, France.

出版信息

Front Neurosci. 2018 Apr 26;12:268. doi: 10.3389/fnins.2018.00268. eCollection 2018.

Abstract

Functional MRI acquisition is sensitive to subjects' motion that cannot be fully constrained. Therefore, signal corrections have to be applied a posteriori in order to mitigate the complex interactions between changing tissue localization and magnetic fields, gradients and readouts. To circumvent current preprocessing strategies limitations, we developed an integrated method that correct motion and spatial low-frequency intensity fluctuations at the level of each slice in order to better fit the acquisition processes. The registration of single or multiple simultaneously acquired slices is achieved online by an Iterated Extended Kalman Filter, favoring the robust estimation of continuous motion, while an intensity bias field is non-parametrically fitted. The proposed extraction of gray-matter BOLD activity from the acquisition space to an anatomical group template space, taking into account distortions, better preserves fine-scale patterns of activity. Importantly, the proposed unified framework generalizes to high-resolution multi-slice techniques. When tested on simulated and real data the latter shows a reduction of motion explained variance and signal variability when compared to the conventional preprocessing approach. These improvements provide more stable patterns of activity, facilitating investigation of cerebral information representation in healthy and/or clinical populations where motion is known to impact fine-scale data.

摘要

功能磁共振成像(fMRI)采集对无法完全抑制的受试者运动敏感。因此,必须事后应用信号校正,以减轻不断变化的组织定位与磁场、梯度和读出之间的复杂相互作用。为了规避当前预处理策略的局限性,我们开发了一种集成方法,该方法在每个切片层面校正运动和空间低频强度波动,以便更好地拟合采集过程。通过迭代扩展卡尔曼滤波器在线实现单个或多个同时采集切片的配准,有利于对连续运动进行稳健估计,同时对强度偏差场进行非参数拟合。考虑到失真,从采集空间到解剖学组模板空间提取灰质BOLD活动的提议方法能更好地保留精细尺度的活动模式。重要的是,提议的统一框架可推广至高分辨率多层技术。在模拟数据和真实数据上进行测试时,与传统预处理方法相比,后者显示运动解释方差和信号变异性有所降低。这些改进提供了更稳定的活动模式,便于在已知运动影响精细尺度数据的健康和/或临床人群中研究脑信息表征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3343/5932184/e162c6628aeb/fnins-12-00268-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验