Department of Physics and, Oregon State University, Corvallis, OR 97331.
Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331.
Mol Biol Cell. 2018 May 15;29(10):1153-1156. doi: 10.1091/mbc.E17-10-0612.
Mitotic spindle assembly requires the collective action of multiple microtubule motors that coordinate their activities in ensembles. However, despite significant advances in our understanding of mitotic kinesins at the single-motor level, multi-motor systems are challenging to reconstitute in vitro and thus less well understood. Recent findings highlighted in this perspective demonstrate how various properties of kinesin-5 and -14 motors-diffusive searching, directional switching, and multivalent interactions-allow them to achieve their physiological roles of cross-linking parallel microtubules and sliding antiparallel ones during cell division. Additionally, we highlight new experimental techniques that will help bridge the gap between in vitro biophysical studies and in vivo cell biology investigations and provide new insights into how specific single-molecule mechanisms generate complex cellular behaviors.
有丝分裂纺锤体的组装需要多种微管马达的集体作用,这些马达在复合物中协调它们的活动。然而,尽管我们在单马达水平上对有丝分裂驱动蛋白的理解有了显著的进展,但多马达系统在体外重组具有挑战性,因此了解得较少。本观点中强调的最新发现表明,驱动蛋白-5 和 -14 马达的各种特性——扩散搜索、定向切换和多价相互作用——如何使它们在细胞分裂过程中实现交联平行微管和滑动反平行微管的生理作用。此外,我们还强调了新的实验技术,这将有助于弥合体外生物物理研究和体内细胞生物学研究之间的差距,并提供对特定单分子机制如何产生复杂细胞行为的新见解。