Suppr超能文献

基于深度学习的 CT 扫描中骨质疏松性椎体骨折自动检测方法。

Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans.

机构信息

Biomedical Data Science Department, Dartmouth College, Hanover, NH 03755, USA.

Radiology Department, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.

出版信息

Comput Biol Med. 2018 Jul 1;98:8-15. doi: 10.1016/j.compbiomed.2018.05.011. Epub 2018 May 8.

Abstract

Osteoporotic vertebral fractures (OVFs) are prevalent in older adults and are associated with substantial personal suffering and socio-economic burden. Early diagnosis and treatment of OVFs are critical to prevent further fractures and morbidity. However, OVFs are often under-diagnosed and under-reported in computed tomography (CT) exams as they can be asymptomatic at an early stage. In this paper, we present and evaluate an automatic system that can detect incidental OVFs in chest, abdomen, and pelvis CT examinations at the level of practicing radiologists. Our OVF detection system leverages a deep convolutional neural network (CNN) to extract radiological features from each slice in a CT scan. These extracted features are processed through a feature aggregation module to make the final diagnosis for the full CT scan. In this work, we explored different methods for this feature aggregation, including the use of a long short-term memory (LSTM) network. We trained and evaluated our system on 1432 CT scans, comprised of 10,546 two-dimensional (2D) images in sagittal view. Our system achieved an accuracy of 89.2% and an F1 score of 90.8% based on our evaluation on a held-out test set of 129 CT scans, which were established as reference standards through standard semiquantitative and quantitative methods. The results of our system matched the performance of practicing radiologists on this test set in real-world clinical circumstances. We expect the proposed system will assist and improve OVF diagnosis in clinical settings by pre-screening routine CT examinations and flagging suspicious cases prior to review by radiologists.

摘要

骨质疏松性椎体骨折(OVF)在老年人中很常见,与巨大的个人痛苦和社会经济负担有关。OVF 的早期诊断和治疗对于预防进一步的骨折和发病至关重要。然而,在 CT 检查中,OVF 经常被漏诊和漏报,因为它们在早期可能没有症状。在本文中,我们提出并评估了一种能够在胸部、腹部和骨盆 CT 检查中检测到偶然 OVF 的自动系统,其检测水平与执业放射科医生相当。我们的 OVF 检测系统利用深度卷积神经网络(CNN)从 CT 扫描的每个切片中提取放射学特征。这些提取的特征通过特征聚合模块进行处理,以便对整个 CT 扫描做出最终诊断。在这项工作中,我们探索了这种特征聚合的不同方法,包括使用长短期记忆(LSTM)网络。我们在 1432 次 CT 扫描上进行了训练和评估,其中包括 10546 张矢状位二维(2D)图像。我们的系统在 129 次 CT 扫描的独立测试集上实现了 89.2%的准确率和 90.8%的 F1 分数,这些 CT 扫描是通过标准的半定量和定量方法建立的参考标准。该系统的结果与在实际临床情况下对该测试集的执业放射科医生的表现相匹配。我们期望该系统能够通过对常规 CT 检查进行预筛选,并在放射科医生审查之前标记可疑病例,从而在临床环境中协助和改善 OVF 诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验