Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, 606-8501 Kyoto, Japan.
Structural Biology Research Center, Graduate School of Sciences, Nagoya University, 464-8601 Nagoya, Japan.
Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5000-E5007. doi: 10.1073/pnas.1803415115. Epub 2018 May 14.
The complex interplay between actin regulatory proteins facilitates the formation of diverse cellular actin structures. Formin homology proteins (formins) play an essential role in the formation of actin stress fibers and yeast actin cables, to which the major actin depolymerizing factor cofilin barely associates. In vitro, F-actin decorated with cofilin exhibits a marked increase in the filament twist. On the other hand, a mammalian formin mDia1 rotates along the long-pitch actin helix during processive actin elongation (helical rotation). Helical rotation may impose torsional force on F-actin in the opposite direction of the cofilin-induced twisting. Here, we show that helical rotation of mDia1 converts F-actin resistant to cofilin both in vivo and in vitro. F-actin assembled by mDia1 without rotational freedom became more resistant to the severing and binding activities of cofilin than freely rotatable F-actin. Electron micrographic analysis revealed untwisting of the long-pitch helix of F-actin elongating from mDia1 on tethering of both mDia1 and the pointed end side of the filament. In cells, single molecules of mDia1ΔC63, an activated mutant containing N-terminal regulatory domains, showed tethering to cell structures more frequently than autoinhibited wild-type mDia1 and mDia1 devoid of N-terminal domains. Overexpression of mDia1ΔC63 induced the formation of F-actin, which has prolonged lifetime and accelerates dissociation of cofilin. Helical rotation of formins may thus serve as an F-actin stabilizing mechanism by which a barbed end-bound molecule can enhance the stability of a filament over a long range.
肌动蛋白调节蛋白之间的复杂相互作用促进了各种细胞肌动蛋白结构的形成。formin 同源蛋白(formin)在肌动蛋白应力纤维和酵母肌动蛋白电缆的形成中起着至关重要的作用,而主要的肌动蛋白解聚因子丝切蛋白很少与之结合。在体外,用丝切蛋白修饰的 F-肌动蛋白表现出明显的丝扭曲增加。另一方面,哺乳动物formin mDia1 在进行性肌动蛋白伸长过程中沿长螺距肌动蛋白螺旋旋转(螺旋旋转)。螺旋旋转可能会对 F-肌动蛋白施加与丝切蛋白诱导的扭曲相反方向的扭转力。在这里,我们表明 mDia1 的螺旋旋转使 F-肌动蛋白在体内和体外都能抵抗丝切蛋白。没有旋转自由度的 mDia1 组装的 F-肌动蛋白比可自由旋转的 F-肌动蛋白对丝切蛋白的切断和结合活性更具抗性。电子显微镜分析显示,当 mDia1 和纤维的尖端侧都被束缚时,从 mDia1 延伸的 F-肌动蛋白的长螺距螺旋解开。在细胞中,含有 N 端调节结构域的激活突变体 mDia1ΔC63 的单个分子比自动抑制的野生型 mDia1 和没有 N 端结构域的 mDia1 更频繁地与细胞结构结合。mDia1ΔC63 的过表达诱导了 F-肌动蛋白的形成,它具有延长的寿命并加速丝切蛋白的解离。因此,formin 的螺旋旋转可能是一种 F-肌动蛋白稳定机制,其中一个结合在有丝分裂末端的分子可以在长距离内增强纤维的稳定性。