Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa.
Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa.
J Appl Physiol (1985). 2018 Aug 1;125(2):545-552. doi: 10.1152/japplphysiol.01085.2017. Epub 2018 May 17.
The aim of this study was to examine the independent contributions of joint range of motion (ROM), muscle fascicle length (MFL), and joint angular velocity on mechanoreceptor-mediated central cardiovascular dynamics using passive leg movement (PLM) in humans. Twelve healthy men (age: 23 ± 2 yr, body mass index: 23.7 kg/m) performed continuous PLM at various randomized joint angle ROMs (0°-50° vs. 50°-100° vs. 0°-100°) and joint angular velocities ("fast": 200°/s vs. "slow": 100°/s). Measures of heart rate (HR), cardiac output (CO), and mean arterial pressure (MAP) were recorded during baseline and during 60 s of PLM. MFL was calculated from muscle architectural measurements of fascicle pennation angle and tissue thickness (Doppler ultrasound). Percent change in MFL increased across the transition of PLM from 0° to 50° (15 ± 3%; P < 0.05) and from 0° to 100° knee flexion (27 ± 4%; P < 0.05). The average peak percent change in HR (increased, approx. +5 ± 2%; P < 0.05), CO (increased, approx. +5 ± 3%; P < 0.05), and MAP (decreased, approx. -2 ± 2%; P < 0.05) were similar between fast versus slow angular velocities when compared against shorter absolute joint ROMs (i.e., 0°-50° and 50°-100°). However, the condition that exhibited the greatest angular velocity in combination with ROM (0°-100° at 200°/s) elicited the greatest increases in HR (+13 ± 2%; P < 0.05) and CO (+12 ± 2%; P < 0.05) compared with all conditions. Additionally, there was a significant relationship between MFL and HR within 0°-100° at 200°/s condition ( r = 0.59; P < 0.05). These findings suggest that increasing MFL and joint ROM in combination with increased angular velocity via PLM are important components that activate mechanoreflex-mediated cardioacceleration and increased CO. NEW & NOTEWORTHY The mechanoreflex is an important autonomic feedback mechanism that serves to optimize skeletal muscle perfusion during exercise. The present study sought to explore the mechanistic contributions that initiate the mechanoreflex using passive leg movement (PLM). The novel findings show that progressively increasing joint angle range of motion and muscle fascicle length via PLM, in combination with increased angular velocity, are important components that activate mechanoreflex-mediated cardioacceleration and increase cardiac output in humans.
本研究旨在通过人体被动腿部运动(PLM),研究关节活动度(ROM)、肌纤维长度(MFL)和关节角速度对机械感受器介导的中心心血管动力学的独立贡献。12 名健康男性(年龄:23±2 岁,体重指数:23.7kg/m)以不同的随机关节角度 ROM(0°-50°与 50°-100°与 0°-100°)和关节角速度(“快”:200°/s 与“慢”:100°/s)进行连续 PLM。在基线和 PLM 持续 60 秒期间记录心率(HR)、心输出量(CO)和平均动脉压(MAP)。从肌节成角和组织厚度的肌构筑测量(多普勒超声)计算 MFL。从 0°到 50°(15±3%;P<0.05)和从 0°到 100°膝关节弯曲(27±4%;P<0.05)时,MFL 的百分比变化增加。HR(增加,约+5±2%;P<0.05)、CO(增加,约+5±3%;P<0.05)和 MAP(减少,约-2±2%;P<0.05)的平均峰值百分比变化在快角速度与慢角速度之间相似,当与较短的绝对关节 ROM(即 0°-50°和 50°-100°)相比时。然而,与所有条件相比,表现出最大角速度与 ROM 相结合的条件(200°/s 时 0°-100°)引起 HR(+13±2%;P<0.05)和 CO(+12±2%;P<0.05)的最大增加。此外,在 200°/s 条件下 0°-100°时,MFL 和 HR 之间存在显著的相关性(r=0.59;P<0.05)。这些发现表明,通过 PLM 增加 MFL 和关节 ROM 并结合角速度增加是激活机械反射介导的心率加快和增加 CO 的重要组成部分。本研究旨在通过人体被动腿部运动(PLM),研究关节活动度(ROM)、肌纤维长度(MFL)和关节角速度对机械感受器介导的中心心血管动力学的独立贡献。12 名健康男性(年龄:23±2 岁,体重指数:23.7kg/m)以不同的随机关节角度 ROM(0°-50°与 50°-100°与 0°-100°)和关节角速度(“快”:200°/s 与“慢”:100°/s)进行连续 PLM。在基线和 PLM 持续 60 秒期间记录心率(HR)、心输出量(CO)和平均动脉压(MAP)。从肌节成角和组织厚度的肌构筑测量(多普勒超声)计算 MFL。从 0°到 50°(15±3%;P<0.05)和从 0°到 100°膝关节弯曲(27±4%;P<0.05)时,MFL 的百分比变化增加。HR(增加,约+5±2%;P<0.05)、CO(增加,约+5±3%;P<0.05)和 MAP(减少,约-2±2%;P<0.05)的平均峰值百分比变化在快角速度与慢角速度之间相似,当与较短的绝对关节 ROM(即 0°-50°和 50°-100°)相比时。然而,与所有条件相比,表现出最大角速度与 ROM 相结合的条件(200°/s 时 0°-100°)引起 HR(+13±2%;P<0.05)和 CO(+12±2%;P<0.05)的最大增加。此外,在 200°/s 条件下 0°-100°时,MFL 和 HR 之间存在显著的相关性(r=0.59;P<0.05)。这些发现表明,通过 PLM 增加 MFL 和关节 ROM 并结合角速度增加是激活机械反射介导的心率加快和增加 CO 的重要组成部分。