Suppr超能文献

使用人体被动腿部运动深入了解机械反射对中枢血液动力学的调节作用的机制。

Mechanistic insights into the modulatory role of the mechanoreflex on central hemodynamics using passive leg movement in humans.

机构信息

Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa.

Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa.

出版信息

J Appl Physiol (1985). 2018 Aug 1;125(2):545-552. doi: 10.1152/japplphysiol.01085.2017. Epub 2018 May 17.

Abstract

The aim of this study was to examine the independent contributions of joint range of motion (ROM), muscle fascicle length (MFL), and joint angular velocity on mechanoreceptor-mediated central cardiovascular dynamics using passive leg movement (PLM) in humans. Twelve healthy men (age: 23 ± 2 yr, body mass index: 23.7 kg/m) performed continuous PLM at various randomized joint angle ROMs (0°-50° vs. 50°-100° vs. 0°-100°) and joint angular velocities ("fast": 200°/s vs. "slow": 100°/s). Measures of heart rate (HR), cardiac output (CO), and mean arterial pressure (MAP) were recorded during baseline and during 60 s of PLM. MFL was calculated from muscle architectural measurements of fascicle pennation angle and tissue thickness (Doppler ultrasound). Percent change in MFL increased across the transition of PLM from 0° to 50° (15 ± 3%; P < 0.05) and from 0° to 100° knee flexion (27 ± 4%; P < 0.05). The average peak percent change in HR (increased, approx. +5 ± 2%; P < 0.05), CO (increased, approx. +5 ± 3%; P < 0.05), and MAP (decreased, approx. -2 ± 2%; P < 0.05) were similar between fast versus slow angular velocities when compared against shorter absolute joint ROMs (i.e., 0°-50° and 50°-100°). However, the condition that exhibited the greatest angular velocity in combination with ROM (0°-100° at 200°/s) elicited the greatest increases in HR (+13 ± 2%; P < 0.05) and CO (+12 ± 2%; P < 0.05) compared with all conditions. Additionally, there was a significant relationship between MFL and HR within 0°-100° at 200°/s condition ( r = 0.59; P < 0.05). These findings suggest that increasing MFL and joint ROM in combination with increased angular velocity via PLM are important components that activate mechanoreflex-mediated cardioacceleration and increased CO. NEW & NOTEWORTHY The mechanoreflex is an important autonomic feedback mechanism that serves to optimize skeletal muscle perfusion during exercise. The present study sought to explore the mechanistic contributions that initiate the mechanoreflex using passive leg movement (PLM). The novel findings show that progressively increasing joint angle range of motion and muscle fascicle length via PLM, in combination with increased angular velocity, are important components that activate mechanoreflex-mediated cardioacceleration and increase cardiac output in humans.

摘要

本研究旨在通过人体被动腿部运动(PLM),研究关节活动度(ROM)、肌纤维长度(MFL)和关节角速度对机械感受器介导的中心心血管动力学的独立贡献。12 名健康男性(年龄:23±2 岁,体重指数:23.7kg/m)以不同的随机关节角度 ROM(0°-50°与 50°-100°与 0°-100°)和关节角速度(“快”:200°/s 与“慢”:100°/s)进行连续 PLM。在基线和 PLM 持续 60 秒期间记录心率(HR)、心输出量(CO)和平均动脉压(MAP)。从肌节成角和组织厚度的肌构筑测量(多普勒超声)计算 MFL。从 0°到 50°(15±3%;P<0.05)和从 0°到 100°膝关节弯曲(27±4%;P<0.05)时,MFL 的百分比变化增加。HR(增加,约+5±2%;P<0.05)、CO(增加,约+5±3%;P<0.05)和 MAP(减少,约-2±2%;P<0.05)的平均峰值百分比变化在快角速度与慢角速度之间相似,当与较短的绝对关节 ROM(即 0°-50°和 50°-100°)相比时。然而,与所有条件相比,表现出最大角速度与 ROM 相结合的条件(200°/s 时 0°-100°)引起 HR(+13±2%;P<0.05)和 CO(+12±2%;P<0.05)的最大增加。此外,在 200°/s 条件下 0°-100°时,MFL 和 HR 之间存在显著的相关性(r=0.59;P<0.05)。这些发现表明,通过 PLM 增加 MFL 和关节 ROM 并结合角速度增加是激活机械反射介导的心率加快和增加 CO 的重要组成部分。本研究旨在通过人体被动腿部运动(PLM),研究关节活动度(ROM)、肌纤维长度(MFL)和关节角速度对机械感受器介导的中心心血管动力学的独立贡献。12 名健康男性(年龄:23±2 岁,体重指数:23.7kg/m)以不同的随机关节角度 ROM(0°-50°与 50°-100°与 0°-100°)和关节角速度(“快”:200°/s 与“慢”:100°/s)进行连续 PLM。在基线和 PLM 持续 60 秒期间记录心率(HR)、心输出量(CO)和平均动脉压(MAP)。从肌节成角和组织厚度的肌构筑测量(多普勒超声)计算 MFL。从 0°到 50°(15±3%;P<0.05)和从 0°到 100°膝关节弯曲(27±4%;P<0.05)时,MFL 的百分比变化增加。HR(增加,约+5±2%;P<0.05)、CO(增加,约+5±3%;P<0.05)和 MAP(减少,约-2±2%;P<0.05)的平均峰值百分比变化在快角速度与慢角速度之间相似,当与较短的绝对关节 ROM(即 0°-50°和 50°-100°)相比时。然而,与所有条件相比,表现出最大角速度与 ROM 相结合的条件(200°/s 时 0°-100°)引起 HR(+13±2%;P<0.05)和 CO(+12±2%;P<0.05)的最大增加。此外,在 200°/s 条件下 0°-100°时,MFL 和 HR 之间存在显著的相关性(r=0.59;P<0.05)。这些发现表明,通过 PLM 增加 MFL 和关节 ROM 并结合角速度增加是激活机械反射介导的心率加快和增加 CO 的重要组成部分。

相似文献

1
Mechanistic insights into the modulatory role of the mechanoreflex on central hemodynamics using passive leg movement in humans.
J Appl Physiol (1985). 2018 Aug 1;125(2):545-552. doi: 10.1152/japplphysiol.01085.2017. Epub 2018 May 17.
2
Single passive leg movement-induced hyperemia: a simple vascular function assessment without a chronotropic response.
J Appl Physiol (1985). 2017 Jan 1;122(1):28-37. doi: 10.1152/japplphysiol.00806.2016. Epub 2016 Nov 10.
3
The Mechanoreflex and Hemodynamic Response to Passive Leg Movement in Heart Failure.
Med Sci Sports Exerc. 2016 Mar;48(3):368-76. doi: 10.1249/MSS.0000000000000782.
4
Concurrent metaboreflex activation increases chronotropic and ventilatory responses to passive leg movement without sex-related differences.
Eur J Appl Physiol. 2023 Aug;123(8):1751-1762. doi: 10.1007/s00421-023-05186-4. Epub 2023 Apr 4.
6
Cardiovascular and autonomic responses to passive arm or leg movement in men and women.
Eur J Appl Physiol. 2019 Feb;119(2):551-559. doi: 10.1007/s00421-018-4030-9. Epub 2018 Nov 16.
7
Muscle stiffening is associated with muscle mechanoreflex-mediated cardioacceleration.
Eur J Appl Physiol. 2022 Mar;122(3):781-790. doi: 10.1007/s00421-022-04885-8. Epub 2022 Jan 13.
8
Passive limb movement: evidence of mechanoreflex sex specificity.
Am J Physiol Heart Circ Physiol. 2013 Jan 1;304(1):H154-61. doi: 10.1152/ajpheart.00532.2012. Epub 2012 Oct 19.
9
Central and peripheral responses to static and dynamic stretch of skeletal muscle: mechano- and metaboreflex implications.
J Appl Physiol (1985). 2017 Jan 1;122(1):112-120. doi: 10.1152/japplphysiol.00721.2016. Epub 2016 Nov 17.
10
Heart failure and movement-induced hemodynamics: partitioning the impact of central and peripheral dysfunction.
Int J Cardiol. 2015 Jan 15;178:232-8. doi: 10.1016/j.ijcard.2014.10.044. Epub 2014 Oct 22.

引用本文的文献

1
Is there a place for ultrasound in diagnosing sarcopenia?
Radiol Oncol. 2025 Jun 16;59(2):153-167. doi: 10.2478/raon-2025-0035. eCollection 2025 Jun 1.
3
Uncovering sarcopenia and frailty in older adults by using muscle ultrasound-A narrative review.
Front Med (Lausanne). 2024 May 17;11:1333205. doi: 10.3389/fmed.2024.1333205. eCollection 2024.
5
Ultrasound Imaging for the Diagnosis and Evaluation of Sarcopenia: An Umbrella Review.
Life (Basel). 2021 Dec 22;12(1):9. doi: 10.3390/life12010009.
6
Application of ultrasound for muscle assessment in sarcopenia: 2020 SARCUS update.
Eur Geriatr Med. 2021 Feb;12(1):45-59. doi: 10.1007/s41999-020-00433-9. Epub 2021 Jan 2.
7
Cyclooxygenase inhibition does not impact the pressor response during static or dynamic mechanoreflex activation in healthy decerebrate rats.
Am J Physiol Regul Integr Comp Physiol. 2019 Sep 1;317(3):R369-R378. doi: 10.1152/ajpregu.00080.2019. Epub 2019 Jun 26.
10
Cardiovascular and autonomic responses to passive arm or leg movement in men and women.
Eur J Appl Physiol. 2019 Feb;119(2):551-559. doi: 10.1007/s00421-018-4030-9. Epub 2018 Nov 16.

本文引用的文献

1
Hyperadditive ventilatory response arising from interaction between the carotid chemoreflex and the muscle mechanoreflex in healthy humans.
J Appl Physiol (1985). 2018 Jul 1;125(1):215-225. doi: 10.1152/japplphysiol.00009.2018. Epub 2018 Mar 22.
2
CORP: Ultrasound assessment of vascular function with the passive leg movement technique.
J Appl Physiol (1985). 2017 Dec 1;123(6):1708-1720. doi: 10.1152/japplphysiol.00557.2017. Epub 2017 Sep 7.
4
Muscle mechanoreflex activation via passive calf stretch causes renal vasoconstriction in healthy humans.
Am J Physiol Regul Integr Comp Physiol. 2017 Jun 1;312(6):R956-R964. doi: 10.1152/ajpregu.00322.2016. Epub 2017 Apr 5.
5
Abnormal cardiovascular response to exercise in hypertension: contribution of neural factors.
Am J Physiol Regul Integr Comp Physiol. 2017 Jun 1;312(6):R851-R863. doi: 10.1152/ajpregu.00042.2017. Epub 2017 Apr 5.
6
Central and peripheral responses to static and dynamic stretch of skeletal muscle: mechano- and metaboreflex implications.
J Appl Physiol (1985). 2017 Jan 1;122(1):112-120. doi: 10.1152/japplphysiol.00721.2016. Epub 2016 Nov 17.
7
The cardiovascular response to passive movement is joint dependent.
Physiol Rep. 2016 Mar;4(5). doi: 10.14814/phy2.12721.
8
Influence of passive stretch on muscle blood flow, oxygenation and central cardiovascular responses in healthy young males.
Am J Physiol Heart Circ Physiol. 2016 May 1;310(9):H1210-21. doi: 10.1152/ajpheart.00732.2015. Epub 2016 Mar 4.
9
Reflex control of the circulation during exercise.
Scand J Med Sci Sports. 2015 Dec;25 Suppl 4:74-82. doi: 10.1111/sms.12600.
10
Cardiovascular Reflexes Activity and Their Interaction during Exercise.
Biomed Res Int. 2015;2015:394183. doi: 10.1155/2015/394183. Epub 2015 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验