Suppr超能文献

锯齿/Notch 信号调节成虫盘祖细胞库的大小。

Serrate/Notch Signaling Regulates the Size of the Progenitor Cell Pool in Imaginal Rings.

机构信息

Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295.

Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295

出版信息

Genetics. 2018 Jul;209(3):829-843. doi: 10.1534/genetics.118.300963. Epub 2018 May 17.

Abstract

imaginal rings are larval tissues composed of progenitor cells that are essential for the formation of adult foreguts, hindguts, and salivary glands. Specified from subsets of ectoderm in the embryo, imaginal ring cells are kept quiescent until midsecond larval instar, and undergo rapid proliferation during the third instar to attain adequate numbers of cells that will replace apoptotic larval tissues for adult organ formation. Here, we show that Notch signaling is activated in all three imaginal rings from middle embryonic stage to early pupal stage, and that Notch signaling positively controls cell proliferation in all three imaginal rings during the third larval instar. Our mutant clonal analysis, knockdown, and gain-of-function studies indicate that canonical Notch pathway components are involved in regulating the proliferation of these progenitor cells. Both -activation and -inhibition between the ligand and receptor control Notch activation in the imaginal ring. Serrate (Ser) is the ligand provided from neighboring imaginal ring cells that -activates Notch signaling, whereas both Ser and Delta (Dl) could -inhibit Notch activity when the ligand and the receptor are in the same cell. In addition, we show that Notch signaling expressed in middle embryonic and first larval stages is required for the initial size of imaginal rings. Taken together, these findings indicate that imaginal rings are excellent models to decipher how progenitor cell number and proliferation are developmentally regulated, and that Notch signaling in these imaginal tissues is the primary growth-promoting signal that controls the size of the progenitor cell pool.

摘要

imaginal 环是由祖细胞组成的幼虫组织,对于形成成虫前肠、后肠和唾液腺至关重要。 imaginal 环细胞由胚胎外胚层的亚群特化而来,在中期幼虫期保持静止,然后在第三期幼虫期快速增殖,以获得足够数量的细胞来替代凋亡的幼虫组织,从而形成成虫器官。在这里,我们发现 Notch 信号在从中期胚胎到早期蛹期的所有三个 imaginal 环中都被激活,并且 Notch 信号在第三期幼虫期积极控制所有三个 imaginal 环中的细胞增殖。我们的突变克隆分析、敲低和功能获得研究表明,经典 Notch 途径的组成部分参与调节这些祖细胞的增殖。配体和受体之间的 -激活和 -抑制都控制着 imaginal 环中的 Notch 激活。 Serrate (Ser) 是来自相邻 imaginal 环细胞的配体,可激活 Notch 信号,而当配体和受体在同一细胞中时,Ser 和 Delta (Dl) 都可以抑制 Notch 活性。此外,我们还表明,中胚胎期和第一期幼虫期表达的 Notch 信号对于 imaginal 环的初始大小是必需的。总之,这些发现表明 imaginal 环是解析祖细胞数量和增殖如何在发育过程中受到调控的极好模型,并且这些 imaginal 组织中的 Notch 信号是控制祖细胞库大小的主要促生长信号。

相似文献

1
Serrate/Notch Signaling Regulates the Size of the Progenitor Cell Pool in Imaginal Rings.
Genetics. 2018 Jul;209(3):829-843. doi: 10.1534/genetics.118.300963. Epub 2018 May 17.
4
Xylosylation of the Notch receptor preserves the balance between its activation by trans-Delta and inhibition by cis-ligands in Drosophila.
PLoS Genet. 2017 Apr 10;13(4):e1006723. doi: 10.1371/journal.pgen.1006723. eCollection 2017 Apr.
6
Notch inhibits Yorkie activity in Drosophila wing discs.
PLoS One. 2014 Aug 26;9(8):e106211. doi: 10.1371/journal.pone.0106211. eCollection 2014.

引用本文的文献

1
Polyploidy promotes transformation of epithelial cells into nonprofessional phagocytes.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2427293122. doi: 10.1073/pnas.2427293122. Epub 2025 Jul 22.
2
The mitochondrial ribosomal protein mRpL4 regulates Notch signaling.
EMBO Rep. 2023 Jun 5;24(6):e55764. doi: 10.15252/embr.202255764. Epub 2023 Apr 3.
4
TM2D genes regulate Notch signaling and neuronal function in Drosophila.
PLoS Genet. 2021 Dec 14;17(12):e1009962. doi: 10.1371/journal.pgen.1009962. eCollection 2021 Dec.
5
Tumor models in various Drosophila tissues.
WIREs Mech Dis. 2021 Nov;13(6):e1525. doi: 10.1002/wsbm.1525. Epub 2021 Mar 21.
6
Polyploid mitosis and depolyploidization promote chromosomal instability and tumor progression in a Notch-induced tumor model.
Dev Cell. 2021 Jul 12;56(13):1976-1988.e4. doi: 10.1016/j.devcel.2021.05.017. Epub 2021 Jun 18.
7
Accelerated cell cycles enable organ regeneration under developmental time constraints in the Drosophila hindgut.
Dev Cell. 2021 Jul 26;56(14):2059-2072.e3. doi: 10.1016/j.devcel.2021.04.029. Epub 2021 May 20.
8
Translational Control of Serrate Expression in Drosophila Cells.
In Vivo. 2021 Mar-Apr;35(2):859-869. doi: 10.21873/invivo.12326.
9
An Overview of Embryogenesis: External Morphology and Transcriptome Profiling in the Hemipteran Insect .
Front Physiol. 2020 Feb 18;11:106. doi: 10.3389/fphys.2020.00106. eCollection 2020.
10
Physiology, Development, and Disease Modeling in the Excretory System.
Genetics. 2020 Feb;214(2):235-264. doi: 10.1534/genetics.119.302289.

本文引用的文献

2
Endoderm Jagged induces liver and pancreas duct lineage in zebrafish.
Nat Commun. 2017 Oct 3;8(1):769. doi: 10.1038/s41467-017-00666-6.
4
Epithelial Tumors Originate in Tumor Hotspots, a Tissue-Intrinsic Microenvironment.
PLoS Biol. 2016 Sep 1;14(9):e1002537. doi: 10.1371/journal.pbio.1002537. eCollection 2016 Sep.
5
The legacy of Drosophila imaginal discs.
Chromosoma. 2016 Sep;125(4):573-92. doi: 10.1007/s00412-016-0595-4. Epub 2016 May 7.
6
Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth.
Cell Stem Cell. 2016 May 5;18(5):587-90. doi: 10.1016/j.stem.2016.02.016. Epub 2016 Mar 4.
10
Visualizing Notch signaling in vivo in Drosophila tissues.
Methods Mol Biol. 2014;1187:101-13. doi: 10.1007/978-1-4939-1139-4_8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验