USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA; Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, USA.
Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA, USA.
Neurobiol Aging. 2018 Aug;68:151-158. doi: 10.1016/j.neurobiolaging.2018.04.009. Epub 2018 Apr 24.
A long-standing question is how to best use brain morphometric and genetic data to distinguish Alzheimer's disease (AD) patients from cognitively normal (CN) subjects and to predict those who will progress from mild cognitive impairment (MCI) to AD. Here, we use a neural network (NN) framework on both magnetic resonance imaging-derived quantitative structural brain measures and genetic data to address this question. We tested the effectiveness of NN models in classifying and predicting AD. We further performed a novel analysis of the NN model to gain insight into the most predictive imaging and genetics features and to identify possible interactions between features that affect AD risk. Data were obtained from the AD Neuroimaging Initiative cohort and included baseline structural MRI data and single nucleotide polymorphism (SNP) data for 138 AD patients, 225 CN subjects, and 358 MCI patients. We found that NN models with both brain and SNP features as predictors perform significantly better than models with either alone in classifying AD and CN subjects, with an area under the receiver operating characteristic curve (AUC) of 0.992, and in predicting the progression from MCI to AD (AUC=0.835). The most important predictors in the NN model were the left middle temporal gyrus volume, the left hippocampus volume, the right entorhinal cortex volume, and the APOE (a gene that encodes apolipoprotein E) ɛ4 risk allele. Furthermore, we identified interactions between the right parahippocampal gyrus and the right lateral occipital gyrus, the right banks of the superior temporal sulcus and the left posterior cingulate, and SNP rs10838725 and the left lateral occipital gyrus. Our work shows the ability of NN models to not only classify and predict AD occurrence but also to identify important AD risk factors and interactions among them.
一个长期存在的问题是如何最好地利用脑形态计量学和遗传数据来区分阿尔茨海默病(AD)患者和认知正常(CN)个体,并预测那些从轻度认知障碍(MCI)进展为 AD 的患者。在这里,我们使用神经网络(NN)框架对磁共振成像衍生的定量结构脑测量和遗传数据进行分析,以解决这个问题。我们测试了 NN 模型在分类和预测 AD 中的有效性。我们进一步对 NN 模型进行了新颖的分析,以深入了解最具预测性的成像和遗传学特征,并确定影响 AD 风险的特征之间可能存在的相互作用。数据来自 AD 神经影像学倡议队列,包括 138 名 AD 患者、225 名 CN 受试者和 358 名 MCI 患者的基线结构 MRI 数据和单核苷酸多态性(SNP)数据。我们发现,同时使用大脑和 SNP 特征作为预测因子的 NN 模型在分类 AD 和 CN 受试者方面的表现明显优于仅使用其中一种特征的模型,其受试者工作特征曲线(ROC)下面积(AUC)为 0.992,并且在预测从 MCI 到 AD 的进展方面(AUC=0.835)。NN 模型中最重要的预测因子是左颞中回体积、左海马体积、右内嗅皮层体积和 APOE(编码载脂蛋白 E)ɛ4 风险等位基因。此外,我们还发现了右海马旁回和右外侧枕叶、右颞上沟和左后扣带回、SNP rs10838725 和左外侧枕叶之间的相互作用。我们的工作表明,NN 模型不仅能够分类和预测 AD 的发生,还能够识别重要的 AD 风险因素及其之间的相互作用。