Suppr超能文献

用于轻度认知障碍和阿尔茨海默病诊断的综合可解释机器学习框架。

A comprehensive interpretable machine learning framework for mild cognitive impairment and Alzheimer's disease diagnosis.

作者信息

Vlontzou Maria Eleftheria, Athanasiou Maria, Dalakleidi Kalliopi V, Skampardoni Ioanna, Davatzikos Christos, Nikita Konstantina

机构信息

Faculty of Electrical and Computer Engineering, National Technical University of Athens, Athens, 15773, Greece.

Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Sci Rep. 2025 Mar 11;15(1):8410. doi: 10.1038/s41598-025-92577-6.

Abstract

An interpretable machine learning (ML) framework is introduced to enhance the diagnosis of Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD) by ensuring robustness of the ML models' interpretations. The dataset used comprises volumetric measurements from brain MRI and genetic data from healthy individuals and patients with MCI/AD, obtained through the Alzheimer's Disease Neuroimaging Initiative. The existing class imbalance is addressed by an ensemble learning approach, while various attribution-based and counterfactual-based interpretability methods are leveraged towards producing diverse explanations related to the pathophysiology of MCI/AD. A unification method combining SHAP with counterfactual explanations assesses the interpretability techniques' robustness. The best performing model yielded 87.5% balanced accuracy and 90.8% F1-score. The attribution-based interpretability methods highlighted significant volumetric and genetic features related to MCI/AD risk. The unification method provided useful insights regarding those features' necessity and sufficiency, further showcasing their significance in MCI/AD diagnosis.

摘要

引入了一个可解释的机器学习(ML)框架,通过确保ML模型解释的稳健性来加强对轻度认知障碍(MCI)和阿尔茨海默病(AD)的诊断。所使用的数据集包括通过阿尔茨海默病神经影像倡议获得的来自脑MRI的体积测量数据以及来自健康个体和MCI/AD患者的遗传数据。通过集成学习方法解决现有的类别不平衡问题,同时利用各种基于归因和基于反事实的可解释性方法来产生与MCI/AD病理生理学相关的各种解释。一种将SHAP与反事实解释相结合的统一方法评估了可解释性技术的稳健性。表现最佳的模型实现了87.5%的平衡准确率和90.8%的F1分数。基于归因的可解释性方法突出了与MCI/AD风险相关的重要体积和遗传特征。统一方法提供了关于这些特征的必要性和充分性的有用见解,进一步展示了它们在MCI/AD诊断中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ada/11897299/a3460dd9d57f/41598_2025_92577_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验