Suppr超能文献

深度学习在放射治疗中的应用调查。

Survey on deep learning for radiotherapy.

机构信息

Department of Medical Physics, Paul Strauss Center, Strasbourg, France.

ICube-UMR 7357, Strasbourg, France.

出版信息

Comput Biol Med. 2018 Jul 1;98:126-146. doi: 10.1016/j.compbiomed.2018.05.018. Epub 2018 May 17.

Abstract

More than 50% of cancer patients are treated with radiotherapy, either exclusively or in combination with other methods. The planning and delivery of radiotherapy treatment is a complex process, but can now be greatly facilitated by artificial intelligence technology. Deep learning is the fastest-growing field in artificial intelligence and has been successfully used in recent years in many domains, including medicine. In this article, we first explain the concept of deep learning, addressing it in the broader context of machine learning. The most common network architectures are presented, with a more specific focus on convolutional neural networks. We then present a review of the published works on deep learning methods that can be applied to radiotherapy, which are classified into seven categories related to the patient workflow, and can provide some insights of potential future applications. We have attempted to make this paper accessible to both radiotherapy and deep learning communities, and hope that it will inspire new collaborations between these two communities to develop dedicated radiotherapy applications.

摘要

超过 50%的癌症患者接受放射治疗,无论是单独使用还是与其他方法联合使用。放射治疗的计划和实施是一个复杂的过程,但现在人工智能技术可以极大地促进这一过程。深度学习是人工智能发展最快的领域,近年来已成功应用于许多领域,包括医学。在本文中,我们首先解释了深度学习的概念,并将其置于机器学习的更广泛背景下进行介绍。介绍了最常见的网络架构,并特别关注卷积神经网络。然后,我们对可应用于放射治疗的深度学习方法的已发表文献进行了综述,这些方法分为与患者工作流程相关的七个类别,可以为潜在的未来应用提供一些见解。我们试图使这篇论文既对放射治疗领域也对深度学习领域的读者都具有可理解性,并希望它能激发这两个领域之间的新合作,以开发专门的放射治疗应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验