Suppr超能文献

基于 2003 年至 2023 年人工智能在放射治疗领域应用的文献计量学分析。

A bibliometrics analysis based on the application of artificial intelligence in the field of radiotherapy from 2003 to 2023.

机构信息

Department of Radiotherapy, Shuguang Hospital, Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China.

Department of Radiotherapy, Changzhou Cancer Hospital, Changzhou, 213032, China.

出版信息

Radiat Oncol. 2024 Nov 11;19(1):157. doi: 10.1186/s13014-024-02551-1.

Abstract

BACKGROUND

Recent research has demonstrated that the use of artificial intelligence (AI) in radiotherapy (RT) has significantly streamlined the process for physicians to treat patients with tumors; however, bibliometric studies examining the correlation between AI and RT are not available. Providing a thorough overview of the knowledge structure and research hotspots between AI and RT was the main goal of the current study.

METHOD

A search was conducted on the Web of Science Core Collection (WoSCC) database for publications pertaining to AI and RT between 2003 and 2023. VOSviewers, CiteSpace, and the R program "bibliometrix" were used to do the bibliometric analysis.

RESULTS

The analysis comprised 615 publications from 64 countries, with USA and China leading the pack. Since 2017, there have been more and more publications about RT and AI every year. The research center that made the biggest contribution to this topic was Maastricht University. The most articles published journal in this field was Frontiers in Oncology, while Medical Physics received the greatest number of citations. Dekker Andre is the author with the greatest number of published articles, while Philippe Lambin was the most often co-cited author. In the newly identified research hotspots, "autocontouring algorithm", "deep learning", and "machine learning" stand out as the main terms.

CONCLUSION

In fact, our bibliometric analysis offers insightful information on current research directions and advancements pertaining to the use of AI in RT. For academics looking to understand the connection between AI and RT, this study is a great resource because it highlights current research frontiers and hot trends.

摘要

背景

最近的研究表明,人工智能(AI)在放射治疗(RT)中的应用极大地简化了医生治疗肿瘤患者的流程;然而,目前尚无针对 AI 和 RT 相关性的文献计量学研究。本研究旨在全面概述 AI 和 RT 之间的知识结构和研究热点。

方法

在 Web of Science 核心合集(WoSCC)数据库中,对 2003 年至 2023 年期间关于 AI 和 RT 的出版物进行了检索。使用 VOSviewer、CiteSpace 和 R 程序“bibliometrix”进行了文献计量分析。

结果

该分析包括来自 64 个国家的 615 篇出版物,美国和中国处于领先地位。自 2017 年以来,每年关于 RT 和 AI 的出版物越来越多。对这个主题贡献最大的研究中心是马斯特里赫特大学。该领域发表文章最多的期刊是《肿瘤前沿》,而《医学物理学》获得的引用最多。发表文章最多的作者是 Dekker Andre,而最常被引用的作者是 Philippe Lambin。在新确定的研究热点中,“自动勾画算法”、“深度学习”和“机器学习”是主要术语。

结论

事实上,我们的文献计量分析为 AI 在 RT 中的应用提供了当前研究方向和进展的深入信息。对于希望了解 AI 和 RT 之间联系的学者来说,这项研究是一个很好的资源,因为它突出了当前的研究前沿和热点趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de7e/11552138/d4f91c09afa6/13014_2024_2551_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验