State Key Laboratory of Chemical Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China.
ACS Nano. 2018 Jul 24;12(7):6725-6733. doi: 10.1021/acsnano.8b01842. Epub 2018 May 30.
In the development of biocompatible nano-/micromotors for drug and cargo delivery, motile bacteria represent an excellent energy source for biomedical applications. Despite intense research of the fabrication of bacteria-based motors, how to effectively utilize the instinctive responses of bacteria to environmental stimuli in the fabrication process, particularly, chemotaxis, remains an urgent and critical issue. Here, by developing a molecular-dynamics model of bacterial chemotaxis, we present an investigation of the transport of a bacteria-activated Janus particle driven by chemotaxis. Upon increasing the stimuli intensity, we find that the transport of the Janus particle undergoes an intriguing second-order state transition: from a composite random walk, combining power-law-distributed truncated Lévy flights with Brownian jiggling, to an enhanced directional transport with size-dependent reversal of locomotion. A state diagram of Janus-particle transport depending on the stimuli intensity and particle size is presented, which allows approaches to realize controllable and predictable propulsion directions. The physical mechanism of these transport behaviors is revealed by performing a theoretical modeling based on the bacterial noise and Janus geometries. Our findings could provide a fundamental insight into the physics underlying the transport of anisotropic particles driven by microorganisms and highlight stimulus-response techniques and asymmetrical design as a versatile strategy to possess a wide array of potential applications for future biocompatible nano-/microdevices.
在开发用于药物和货物输送的生物相容性纳米/微马达的过程中,运动细菌为生物医学应用提供了极好的能源。尽管对基于细菌的马达的制造进行了大量研究,但如何在制造过程中有效地利用细菌对环境刺激的本能反应,特别是趋化性,仍然是一个紧迫和关键的问题。在这里,通过开发细菌趋化性的分子动力学模型,我们研究了由趋化性驱动的细菌激活的 Janus 粒子的输运。随着刺激强度的增加,我们发现 Janus 粒子的输运经历了一个有趣的二级状态转变:从组合了具有布朗抖动的幂律截断 Lévy 飞行的复合随机行走,到具有与运动方向相关的反转的增强的定向输运。提出了一个依赖于刺激强度和粒子尺寸的 Janus 粒子输运的状态图,这使得实现可控和可预测的推进方向成为可能。通过基于细菌噪声和 Janus 几何形状的理论建模,揭示了这些输运行为的物理机制。我们的发现可以为受微生物驱动的各向异性粒子输运的物理基础提供基本的认识,并强调刺激-反应技术和不对称设计作为未来生物相容的纳米/微器件具有广泛应用潜力的一种通用策略。