Suppr超能文献

活性Janus纳米颗粒的趋化性。

Chemotaxis of Active Janus Nanoparticles.

作者信息

Popescu Mihail N, Uspal William E, Bechinger Clemens, Fischer Peer

机构信息

Max-Planck-Institut für Intelligente Systeme , Heisenbergstr. 3 , D-70569 Stuttgart , Germany.

IV. Institut für Theoretische Physik , Universität Stuttgart , Pfaffenwaldring 57 , D-70569 Stuttgart , Germany.

出版信息

Nano Lett. 2018 Sep 12;18(9):5345-5349. doi: 10.1021/acs.nanolett.8b02572. Epub 2018 Aug 8.

Abstract

While colloids and molecules in solution exhibit passive Brownian motion, particles that are partially covered with a catalyst, which promotes the transformation of a fuel dissolved in the solution, can actively move. These active Janus particles are known as "chemical nanomotors" or self-propelling "swimmers" and have been realized with a range of catalysts, sizes, and particle geometries. Because their active translation depends on the fuel concentration, one expects that active colloidal particles should also be able to swim toward a fuel source. Synthesizing and engineering nanoparticles with distinct chemotactic properties may enable important developments, such as particles that can autonomously swim along a pH gradient toward a tumor. Chemotaxis requires that the particles possess an active coupling of their orientation to a chemical gradient. In this Perspective we provide a simple, intuitive description of the underlying mechanisms for chemotaxis, as well as the means to analyze and classify active particles that can show positive or negative chemotaxis. The classification provides guidance for engineering a specific response and is a useful organizing framework for the quantitative analysis and modeling of chemotactic behaviors. Chemotaxis is emerging as an important focus area in the field of active colloids and promises a number of fascinating applications for nanoparticles and particle-based delivery.

摘要

虽然溶液中的胶体和分子呈现被动布朗运动,但部分覆盖有催化剂的粒子能够主动移动,这种催化剂可促进溶液中溶解燃料的转化。这些活性 Janus 粒子被称为“化学纳米马达”或自推进“游泳者”,并且已经通过一系列催化剂、尺寸和粒子几何形状得以实现。由于它们的主动平移取决于燃料浓度,人们预期活性胶体粒子也应该能够朝着燃料源游动。合成并设计具有独特趋化特性的纳米粒子可能会带来重要进展,比如能够沿着 pH 梯度自主游向肿瘤的粒子。趋化作用要求粒子将其取向与化学梯度进行主动耦合。在这篇观点文章中,我们对趋化作用的潜在机制提供了一个简单、直观的描述,以及分析和分类可呈现正向或负向趋化作用的活性粒子的方法。该分类为设计特定响应提供了指导,并且是趋化行为定量分析和建模的一个有用的组织框架。趋化作用正在成为活性胶体领域的一个重要焦点领域,并有望为纳米粒子和基于粒子的递送带来许多引人入胜的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验