Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia.
Chem Rev. 2018 Jun 13;118(11):5392-5487. doi: 10.1021/acs.chemrev.7b00729. Epub 2018 May 25.
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
生物分子-膜相互作用的分子分析是理解大多数细胞系统的核心,但由于所有活细胞中膜结构和组成的复杂性,它已成为一个复杂的技术挑战。我们回顾了表面等离子体共振和双折射干涉基于生物传感器在使用平面单层或双层或脂质体的基于生物膜系统的研究中的应用。我们首先描述了表面等离子体共振的光学原理和仪器,包括线性和异常传输模式以及双折射干涉。然后,我们描述了广泛的模型膜系统,这些系统已被开发用于沉积在芯片表面上,包括平面、聚合物缓冲、键合双层和脂质体。接下来描述了不同的化学固定或物理吸附技术。然后概述了将这一系列广泛的工程膜表面应用于生物分子-膜相互作用,以及使用这些技术获得的信息如何增强我们对膜介导肽和蛋白质功能的分子理解。我们首先讨论了单独使用 SPR 来表征膜结合的实验,并描述了这些研究如何深入了解与膜相互作用相关的分子事件,以及它们如何为最近更关注肽和蛋白质结合过程中膜结构变化的研究提供重要动力。然后,我们讨论了不监测膜结构影响的新兴局限性,以及如何将 SPR 数据与 DPI 结合使用,以提供有关膜如何响应肽和蛋白质结合的重要新信息。