Suppr超能文献

关于使用瓦尔和毛雷利方法生成多变量、非正态数据用于模拟目的的警示说明。

A Cautionary Note on the Use of the Vale and Maurelli Method to Generate Multivariate, Nonnormal Data for Simulation Purposes.

作者信息

Olvera Astivia Oscar L, Zumbo Bruno D

机构信息

University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

Educ Psychol Meas. 2015 Aug;75(4):541-567. doi: 10.1177/0013164414548894. Epub 2014 Sep 12.

Abstract

To further understand the properties of data-generation algorithms for multivariate, nonnormal data, two Monte Carlo simulation studies comparing the Vale and Maurelli method and the Headrick fifth-order polynomial method were implemented. Combinations of skewness and kurtosis found in four published articles were run and attention was specifically paid to the quality of the sample estimates of univariate skewness and kurtosis. In the first study, it was found that the Vale and Maurelli algorithm yielded downward-biased estimates of skewness and kurtosis (particularly at small samples) that were also highly variable. This method was also prone to generate extreme sample kurtosis values if the population kurtosis was high. The estimates obtained from Headrick's algorithm were also biased downward, but much less so than the estimates obtained through Vale and Maurelli and much less variable. The second study reproduced the first simulation in the Curran, West, and Finch article using both the Vale and Maurelli method and the Heardick method. It was found that the chi-square values and empirical rejection rates changed depending on which data-generation method was used, sometimes sufficiently so that some of the original conclusions of the authors would no longer hold. In closing, recommendations are presented regarding the relative merits of each algorithm.

摘要

为了进一步了解多变量非正态数据生成算法的特性,我们进行了两项蒙特卡罗模拟研究,比较了瓦尔和莫雷利方法以及黑德里克五次多项式方法。我们运行了在四篇已发表文章中发现的偏度和峰度的组合,并特别关注单变量偏度和峰度的样本估计质量。在第一项研究中,我们发现瓦尔和莫雷利算法产生的偏度和峰度估计值存在向下偏差(特别是在小样本情况下),而且变化很大。如果总体峰度较高,这种方法还容易产生极端的样本峰度值。从黑德里克算法获得的估计值也有向下偏差,但比通过瓦尔和莫雷利方法获得的估计值偏差小得多,且变化也小得多。第二项研究使用瓦尔和莫雷利方法以及黑德里克方法重现了柯伦、韦斯特和芬奇文章中的第一次模拟。结果发现,卡方值和经验拒绝率会根据所使用的数据生成方法而变化,有时变化程度足以使作者的一些原始结论不再成立。最后,我们针对每种算法的相对优点提出了建议。

相似文献

1
A Cautionary Note on the Use of the Vale and Maurelli Method to Generate Multivariate, Nonnormal Data for Simulation Purposes.
Educ Psychol Meas. 2015 Aug;75(4):541-567. doi: 10.1177/0013164414548894. Epub 2014 Sep 12.
2
A Simple Simulation Technique for Nonnormal Data with Prespecified Skewness, Kurtosis, and Covariance Matrix.
Multivariate Behav Res. 2016 Mar-Jun;51(2-3):207-19. doi: 10.1080/00273171.2015.1133274. Epub 2016 Mar 25.
3
On the solution multiplicity of the Fleishman method and its impact in simulation studies.
Br J Math Stat Psychol. 2018 Nov;71(3):437-458. doi: 10.1111/bmsp.12126. Epub 2018 Jan 11.
4
How General is the Vale-Maurelli Simulation Approach?
Psychometrika. 2015 Dec;80(4):1066-83. doi: 10.1007/s11336-014-9414-0. Epub 2014 Aug 6.
5
A Problem with Discretizing Vale-Maurelli in Simulation Studies.
Psychometrika. 2019 Jun;84(2):554-561. doi: 10.1007/s11336-019-09663-8. Epub 2019 Mar 5.
6
Asymptotic confidence intervals for the Pearson correlation via skewness and kurtosis.
Br J Math Stat Psychol. 2018 Feb;71(1):167-185. doi: 10.1111/bmsp.12113. Epub 2017 Sep 4.
7
Sphericity estimation bias for repeated measures designs in simulation studies.
Behav Res Methods. 2016 Dec;48(4):1621-1630. doi: 10.3758/s13428-015-0673-1.
8
9
Simulating Multivariate Nonnormal Data Using an Iterative Algorithm.
Multivariate Behav Res. 2008 Jul-Sep;43(3):355-81. doi: 10.1080/00273170802285693.
10
Many nonnormalities, one simulation: Do different data generation algorithms affect study results?
Behav Res Methods. 2024 Oct;56(7):6464-6484. doi: 10.3758/s13428-024-02364-w. Epub 2024 Feb 22.

引用本文的文献

2
Effects of Compounded Nonnormality of Residuals in Hierarchical Linear Modeling.
Educ Psychol Meas. 2022 Apr;82(2):330-355. doi: 10.1177/00131644211010234. Epub 2021 May 10.
3
Fitting Latent Growth Models with Small Sample Sizes and Non-normal Missing Data.
Int J Behav Dev. 2021 Mar;45(2):179-192. doi: 10.1177/0165025420979365. Epub 2021 Jan 7.
4
Indirect Effects in Sequential Mediation Models: Evaluating Methods for Hypothesis Testing and Confidence Interval Formation.
Multivariate Behav Res. 2020 Mar-Apr;55(2):188-210. doi: 10.1080/00273171.2019.1618545. Epub 2019 Jun 10.

本文引用的文献

1
Generating Nonnormal Multivariate Data Using Copulas: Applications to SEM.
Multivariate Behav Res. 2012 Jul;47(4):547-65. doi: 10.1080/00273171.2012.692629.
2
How to Generate Non-normal Data for Simulation of Structural Equation Models.
Multivariate Behav Res. 1997 Oct 1;32(4):355-73. doi: 10.1207/s15327906mbr3204_3.
3
Simulating Multivariate Nonnormal Data Using an Iterative Algorithm.
Multivariate Behav Res. 2008 Jul-Sep;43(3):355-81. doi: 10.1080/00273170802285693.
4
EVALUATION OF A NEW MEAN SCALED AND MOMENT ADJUSTED TEST STATISTIC FOR SEM.
Struct Equ Modeling. 2013 Jan 1;20(1):148-156. doi: 10.1080/10705511.2013.742403. Epub 2013 Jan 29.
5
Simulating multivariate g-and-h distributions.
Br J Math Stat Psychol. 2010 Feb;63(Pt 1):63-74. doi: 10.1348/000711009X423067. Epub 2009 Apr 8.
6
Robust step-down tests for multivariate independent group designs.
Br J Math Stat Psychol. 2007 Nov;60(Pt 2):245-65. doi: 10.1348/000711006X117853.
7
Robust tests for the multivariate Behrens-Fisher problem.
Comput Methods Programs Biomed. 2005 Feb;77(2):129-39. doi: 10.1016/j.cmpb.2004.09.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验