Suppr超能文献

基于代谢组学的预测分类器用于早期检测胰腺导管腺癌。

Metabolomics based predictive classifier for early detection of pancreatic ductal adenocarcinoma.

作者信息

Unger Keith, Mehta Khyati Y, Kaur Prabhjit, Wang Yiwen, Menon Smrithi S, Jain Shreyans K, Moonjelly Rose A, Suman Shubhankar, Datta Kamal, Singh Rajbir, Fogel Paul, Cheema Amrita K

机构信息

MedStar Georgetown University Hospital, Washington, DC, United States of America.

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America.

出版信息

Oncotarget. 2018 May 1;9(33):23078-23090. doi: 10.18632/oncotarget.25212.

Abstract

The availability of robust classification algorithms for the identification of high risk individuals with resectable disease is critical to improving early detection strategies and ultimately increasing survival rates in PC. We leveraged high quality biospecimens with extensive clinical annotations from patients that received treatment at the Medstar-Georgetown University hospital. We used a high resolution mass spectrometry based global tissue profiling approach in conjunction with multivariate analysis for developing a classification algorithm that would predict early stage PC with high accuracy. The candidate biomarkers were annotated using tandem mass spectrometry. We delineated a six metabolite panel that could discriminate early stage PDAC from benign pancreatic disease with >95% accuracy of classification (Specificity = 0.85, Sensitivity = 0.9). Subsequently, we used multiple reaction monitoring mass spectrometry for evaluation of this panel in plasma samples obtained from the same patients. The pattern of expression of these metabolites in plasma was found to be discordant as compared to that in tissue. Taken together, our results show the value of using a metabolomics approach for developing highly predictive panels for classification of early stage PDAC. Future investigations will likely lead to the development of validated biomarker panels with potential for clinical translation in conjunction with CA-19-9 and/or other biomarkers.

摘要

拥有强大的分类算法来识别可切除疾病的高危个体对于改善早期检测策略并最终提高胰腺癌(PC)的生存率至关重要。我们利用了来自在Medstar - 乔治敦大学医院接受治疗的患者的高质量生物标本以及广泛的临床注释。我们采用基于高分辨率质谱的全组织分析方法并结合多变量分析来开发一种能够高精度预测早期胰腺癌的分类算法。候选生物标志物通过串联质谱进行注释。我们确定了一个六种代谢物的组合,它能够以>95%的分类准确率区分早期胰腺导管腺癌(PDAC)和良性胰腺疾病(特异性 = 0.85,敏感性 = 0.9)。随后,我们使用多反应监测质谱对从同一患者获得的血浆样本中的该组合进行评估。发现这些代谢物在血浆中的表达模式与在组织中的表达模式不一致。综上所述,我们的结果表明了使用代谢组学方法开发用于早期胰腺导管腺癌分类的高预测性组合的价值。未来的研究可能会导致结合CA - 19 - 9和/或其他生物标志物开发出具有临床转化潜力的经过验证的生物标志物组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61b9/5955422/5b1399d34c4b/oncotarget-09-23078-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验