Suppr超能文献

基于多重蛋白质组学的 2 型糖尿病患者主要心血管事件预测。

Multiplex proteomics for prediction of major cardiovascular events in type 2 diabetes.

机构信息

Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Alfred Nobels Allé 23, SE 14183, Huddinge, Sweden.

Department of Medical Sciences, Uppsala University, Uppsala, Sweden.

出版信息

Diabetologia. 2018 Aug;61(8):1748-1757. doi: 10.1007/s00125-018-4641-z. Epub 2018 May 24.

Abstract

AIMS/HYPOTHESIS: Multiplex proteomics could improve understanding and risk prediction of major adverse cardiovascular events (MACE) in type 2 diabetes. This study assessed 80 cardiovascular and inflammatory proteins for biomarker discovery and prediction of MACE in type 2 diabetes.

METHODS

We combined data from six prospective epidemiological studies of 30-77-year-old individuals with type 2 diabetes in whom 80 circulating proteins were measured by proximity extension assay. Multivariable-adjusted Cox regression was used in a discovery/replication design to identify biomarkers for incident MACE. We used gradient-boosted machine learning and lasso regularised Cox regression in a random 75% training subsample to assess whether adding proteins to risk factors included in the Swedish National Diabetes Register risk model would improve the prediction of MACE in the separate 25% test subsample.

RESULTS

Of 1211 adults with type 2 diabetes (32% women), 211 experienced a MACE over a mean (±SD) of 6.4 ± 2.3 years. We replicated associations (<5% false discovery rate) between risk of MACE and eight proteins: matrix metalloproteinase (MMP)-12, IL-27 subunit α (IL-27a), kidney injury molecule (KIM)-1, fibroblast growth factor (FGF)-23, protein S100-A12, TNF receptor (TNFR)-1, TNFR-2 and TNF-related apoptosis-inducing ligand receptor (TRAIL-R)2. Addition of the 80-protein assay to established risk factors improved discrimination in the separate test sample from 0.686 (95% CI 0.682, 0.689) to 0.748 (95% CI 0.746, 0.751). A sparse model of 20 added proteins achieved a C statistic of 0.747 (95% CI 0.653, 0.842) in the test sample.

CONCLUSIONS/INTERPRETATION: We identified eight protein biomarkers, four of which are novel, for risk of MACE in community residents with type 2 diabetes, and found improved risk prediction by combining multiplex proteomics with an established risk model. Multiprotein arrays could be useful in identifying individuals with type 2 diabetes who are at highest risk of a cardiovascular event.

摘要

目的/假设:多指标蛋白质组学可以提高对 2 型糖尿病患者主要不良心血管事件(MACE)的理解和风险预测。本研究评估了 80 种心血管和炎症蛋白,以发现生物标志物并预测 2 型糖尿病患者的 MACE。

方法

我们将 6 项前瞻性流行病学研究的数据合并,纳入了 30-77 岁的 2 型糖尿病患者,通过邻近延伸分析测量了 80 种循环蛋白。多变量调整的 Cox 回归用于发现/复制设计,以确定 MACE 事件的生物标志物。我们使用梯度提升机机器学习和套索正则化 Cox 回归,在随机的 75%训练子样本中评估将蛋白质添加到瑞典国家糖尿病登记风险模型中包含的风险因素中,是否可以改善 25%测试子样本中 MACE 的预测。

结果

在 1211 名患有 2 型糖尿病的成年人(32%为女性)中,211 人在平均(±标准差)6.4±2.3 年期间发生了 MACE。我们复制了与 MACE 风险相关的 8 种蛋白质的关联(<5%的错误发现率):基质金属蛋白酶(MMP)-12、白细胞介素 27 亚单位-α(IL-27a)、肾损伤分子(KIM)-1、成纤维细胞生长因子(FGF)-23、蛋白 S100-A12、肿瘤坏死因子受体(TNFR)-1、TNFR-2 和 TNF 相关凋亡诱导配体受体(TRAIL-R)2。将 80 种蛋白质检测试剂盒添加到已建立的风险因素中,可以提高在单独的测试样本中的区分度,从 0.686(95%CI 0.682,0.689)提高到 0.748(95%CI 0.746,0.751)。在测试样本中,稀疏模型的 20 个添加蛋白质的 C 统计量为 0.747(95%CI 0.653,0.842)。

结论/解释:我们在社区 2 型糖尿病患者中发现了 8 种用于 MACE 风险的蛋白质生物标志物,其中 4 种是新发现的,并且通过将多指标蛋白质组学与已建立的风险模型相结合,发现了风险预测的改善。多蛋白阵列可用于识别 2 型糖尿病患者中患心血管事件风险最高的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c31a/6061158/cac2f7e944e3/125_2018_4641_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验