Suppr超能文献

院外生存的半参数时间过程回归

Semiparametric temporal process regression of survival-out-of-hospital.

作者信息

Zhan Tianyu, Schaubel Douglas E

机构信息

Department of Biostatistics, University of Michigan, 1415 Washington Hts., Ann Arbor, MI, 48109-2029, USA.

出版信息

Lifetime Data Anal. 2019 Apr;25(2):322-340. doi: 10.1007/s10985-018-9433-8. Epub 2018 May 23.

Abstract

The recurrent/terminal event data structure has undergone considerable methodological development in the last 10-15 years. An example of the data structure that has arisen with increasing frequency involves the recurrent event being hospitalization and the terminal event being death. We consider the response Survival-Out-of-Hospital, defined as a temporal process (indicator function) taking the value 1 when the subject is currently alive and not hospitalized, and 0 otherwise. Survival-Out-of-Hospital is a useful alternative strategy for the analysis of hospitalization/survival in the chronic disease setting, with the response variate representing a refinement to survival time through the incorporation of an objective quality-of-life component. The semiparametric model we consider assumes multiplicative covariate effects and leaves unspecified the baseline probability of being alive-and-out-of-hospital. Using zero-mean estimating equations, the proposed regression parameter estimator can be computed without estimating the unspecified baseline probability process, although baseline probabilities can subsequently be estimated for any time point within the support of the censoring distribution. We demonstrate that the regression parameter estimator is asymptotically normal, and that the baseline probability function estimator converges to a Gaussian process. Simulation studies are performed to show that our estimating procedures have satisfactory finite sample performances. The proposed methods are applied to the Dialysis Outcomes and Practice Patterns Study (DOPPS), an international end-stage renal disease study.

摘要

在过去10到15年中,复发/终末事件数据结构在方法学上有了相当大的发展。一种出现频率越来越高的数据结构示例是,复发事件为住院,终末事件为死亡。我们考虑“院外生存”这一响应变量,它被定义为一个时间过程(指示函数),当个体当前存活且未住院时取值为1,否则取值为0。“院外生存”是分析慢性病环境中住院/生存情况的一种有用的替代策略,该响应变量通过纳入客观的生活质量成分,对生存时间进行了细化。我们考虑的半参数模型假定协变量具有乘法效应,且未指定院外存活的基线概率。使用零均值估计方程,可以在不估计未指定的基线概率过程的情况下计算所提出的回归参数估计量,不过随后可以在删失分布的支撑范围内的任何时间点估计基线概率。我们证明回归参数估计量渐近正态,且基线概率函数估计量收敛到一个高斯过程。进行了模拟研究以表明我们的估计程序具有令人满意的有限样本性能。所提出的方法应用于一项国际终末期肾病研究——透析结果与实践模式研究(DOPPS)。

相似文献

1
Semiparametric temporal process regression of survival-out-of-hospital.院外生存的半参数时间过程回归
Lifetime Data Anal. 2019 Apr;25(2):322-340. doi: 10.1007/s10985-018-9433-8. Epub 2018 May 23.
3
Additive hazards model with auxiliary subgroup survival information.具有辅助亚组生存信息的相加风险模型。
Lifetime Data Anal. 2019 Jan;25(1):128-149. doi: 10.1007/s10985-018-9426-7. Epub 2018 Feb 22.
6
A semiparametric additive rates model for recurrent event data.用于复发事件数据的半参数加法率模型。
Lifetime Data Anal. 2006 Dec;12(4):389-406. doi: 10.1007/s10985-006-9017-x. Epub 2006 Sep 20.

本文引用的文献

3
Regression models for expected length of stay.预期住院时间的回归模型。
Stat Med. 2016 Mar 30;35(7):1178-92. doi: 10.1002/sim.6771. Epub 2015 Oct 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验