Suppr超能文献

基于光学相干断层扫描的自动三维细胞计数法用于活体评估实验性鼠眼葡萄膜炎的分级。

Automated three-dimensional cell counting method for grading uveitis of rodent eye in vivo with optical coherence tomography.

机构信息

Department of Bioengineering, University of Washington, Seattle, Washington.

School of Electrical and Electronics Engineering, College of ICT Engineering, Chung-Ang University, Seoul, Republic of Korea.

出版信息

J Biophotonics. 2018 Sep;11(9):e201800140. doi: 10.1002/jbio.201800140. Epub 2018 Jun 11.

Abstract

In preclinical vision research, cell grading in small animal models is essential for the quantitative evaluation of intraocular inflammation. Here, we present a new and practical optical coherence tomography (OCT) image analysis method for the automated detection and counting of aqueous cells in the anterior chamber (AC) of a rodent model of uveitis. Anterior segment OCT images are acquired with a 100 kHz swept-source OCT system. The proposed method consists of 2 steps. In the first step, we first despeckle and binarize each OCT image. After removing AS structures in the binary image, we then apply area thresholding to isolate cell-like objects. Potential cell candidates are selected based on their best fit to roundness. The second step performs the cell counting within the whole AC, in which additional cell tracking analysis is conducted on the successive OCT images to eliminate redundancy in cell counting. Finally, 3D cell grading using the proposed method is demonstrated in longitudinal OCT imaging of a mouse model of anterior uveitis in vivo. Rendering of anterior segment (orange) of mouse eye and automatically counted anterior chamber cells (green). Inset is a top view of the rendering, showing the cell distribution across the anterior chamber.

摘要

在临床前视觉研究中,对小动物模型中的细胞进行分级对于评估眼内炎症的定量评估至关重要。在这里,我们提出了一种新的实用光学相干断层扫描(OCT)图像分析方法,用于自动检测和计数葡萄膜炎啮齿动物模型前房(AC)中的房水细胞。使用 100 kHz 扫频源 OCT 系统获取眼前节 OCT 图像。该方法包括 2 个步骤。在第一步中,我们首先对每个 OCT 图像进行去噪和二值化。在去除二进制图像中的 AS 结构后,我们应用面积阈值将细胞状物体分离出来。根据其与圆形的最佳拟合度选择潜在的细胞候选物。第二步在整个 AC 中进行细胞计数,在该步骤中,对连续的 OCT 图像进行额外的细胞跟踪分析,以消除细胞计数中的冗余。最后,使用提出的方法在体内急性前葡萄膜炎的小鼠模型的纵向 OCT 成像中进行了 3D 细胞分级。显示了鼠标眼睛前段(橙色)和自动计数的前房细胞(绿色)的渲染。插图是渲染的顶视图,显示了前房内的细胞分布。

相似文献

引用本文的文献

3
Artificial confocal microscopy for deep label-free imaging.用于深度无标记成像的人工共聚焦显微镜。
Nat Photonics. 2023 Mar;17(3):250-258. doi: 10.1038/s41566-022-01140-6. Epub 2023 Jan 12.
7
Quantitative Assessment of Experimental Ocular Inflammatory Disease.实验性眼部炎症疾病的定量评估。
Front Immunol. 2021 Jun 18;12:630022. doi: 10.3389/fimmu.2021.630022. eCollection 2021.

本文引用的文献

7
Anterior chamber cell grading by optical coherence tomography.前房细胞分级的光学相干断层扫描。
Invest Ophthalmol Vis Sci. 2013 Jan 9;54(1):258-65. doi: 10.1167/iovs.12-10477.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验