Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
Department of Chemistry, Temple University, Philadelphia, PA 19122, United States.
Bioorg Med Chem. 2018 Jul 23;26(12):3453-3460. doi: 10.1016/j.bmc.2018.05.017. Epub 2018 May 24.
Antibiotic resistance is a serious threat to global public health, and methicillin-resistant Staphylococcus aureus (MRSA) is a poignant example. The macrolactone natural product albocycline, derived from various Streptomyces strains, was recently identified as a promising antibiotic candidate for the treatment of both MRSA and vancomycin-resistant S. aureus (VRSA), which is another clinically relevant and antibiotic resistant strain. Moreover, it was hypothesized that albocycline's antimicrobial activity was derived from the inhibition of peptidoglycan (i.e., bacterial cell wall) biosynthesis. Herein, preliminary mechanistic studies are performed to test the hypothesis that albocycline inhibits MurA, the enzyme that catalyzes the first step of peptidoglycan biosynthesis, using a combination of biological assays alongside molecular modeling and simulation studies. Computational modeling suggests albocycline exists as two conformations in solution, and computational docking of these conformations to an ensemble of simulated receptor structures correctly predicted preferential binding to S. aureus MurA-the enzyme that catalyzes the first step of peptidoglycan biosynthesis-over Escherichia coli (E. coli) MurA. Albocycline isolated from the producing organism (Streptomyces maizeus) weakly inhibited S. aureus MurA (IC of 480 μM) but did not inhibit E. coli MurA. The antimicrobial activity of albocycline against resistant S. aureus strains was superior to that of vancomycin, preferentially inhibiting Gram-positive organisms. Albocycline was not toxic to human HepG2 cells in MTT assays. While these studies demonstrate that albocycline is a promising lead candidate against resistant S. aureus, taken together they suggest that MurA is not the primary target, and further work is necessary to identify the major biological target.
抗生素耐药性是对全球公共卫生的严重威胁,耐甲氧西林金黄色葡萄球菌(MRSA)就是一个鲜明的例子。大环内酯类天然产物 albocycline 来源于各种链霉菌菌株,最近被鉴定为治疗 MRSA 和万古霉素耐药金黄色葡萄球菌(VRSA)的有前途的抗生素候选药物,后者是另一种具有临床相关性和抗生素耐药性的菌株。此外,有人假设 albocycline 的抗菌活性来自于肽聚糖(即细菌细胞壁)生物合成的抑制。在此,通过结合生物测定和分子建模与模拟研究,进行了初步的机制研究来测试 albocycline 抑制肽聚糖生物合成第一步的酶 MurA 的假设。计算模型表明,albo cycline 在溶液中存在两种构象,并且这些构象的计算对接模拟受体结构的集合正确地预测了对金黄色葡萄球菌 MurA 的优先结合-催化肽聚糖生物合成第一步的酶-而不是大肠杆菌(E. coli)MurA。从产生菌(玉米链霉菌)中分离出的 albocycline 对金黄色葡萄球菌 MurA 的抑制作用较弱(IC 为 480μM),但对大肠杆菌 MurA 没有抑制作用。albo cycline 对耐药金黄色葡萄球菌菌株的抗菌活性优于万古霉素,优先抑制革兰氏阳性菌。albo cycline 在 MTT 测定中对人 HepG2 细胞没有毒性。虽然这些研究表明 albocycline 是一种有前途的耐药金黄色葡萄球菌候选药物,但它们共同表明 MurA 不是主要靶标,需要进一步研究以确定主要的生物靶标。