Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
College of Life Science, Shandong Normal University, Jinan 250014, China.
Plant Sci. 2018 Jul;272:276-293. doi: 10.1016/j.plantsci.2018.03.036. Epub 2018 May 1.
Water deficit is one of the major factors limiting crop productivity worldwide. Plant roots play a key role in uptaking water, perceiving and transducing of water deficit signals to shoot. Although the mechanisms of drought-tolerance have been reported recently, the transcriptional regulatory network of wheat root response to water stress has not been fully understood. In this study, drought-tolerant cultivar JM-262 and susceptible cultivar LM-2 are planted to characterize the root transcriptional changes and physiological responses to water deficit. A total of 8197 drought tolerance-associated differentially expressed genes (DEGs) are identified, these genes are mainly mapped to carbon metabolism, flavonoid biosynthesis, and phytohormone signal transduction. The number and expression level of DEGs involved in antioxidative and antiosmotic stresses are more enhanced in JM-262 under water stress. Furthermore, we find the DEGs related to root development are much more induced in JM-262 in phytohormone signal transduction and carbon metabolism pathway. In conclusion, JM-262 may alleviate the damage of drought by producing more osmoprotectants, ROS scavengers, biomass and energy. Interestingly, hormone signaling and cross-talk probably play an important role in promoting JM-262 greater root systems to take up more water, higher capabilities to induce more drought-related DEGs and higher resisitance to oxidative stresse.
水分亏缺是全球范围内限制作物生产力的主要因素之一。植物根系在吸水、感知和转导水分亏缺信号到地上部分方面起着关键作用。尽管最近已经报道了耐旱机制,但小麦根系对水分胁迫响应的转录调控网络尚未完全理解。在这项研究中,种植了耐旱品种 JM-262 和敏感品种 LM-2,以表征根系对水分亏缺的转录变化和生理响应。共鉴定出 8197 个与耐旱性相关的差异表达基因(DEGs),这些基因主要映射到碳代谢、类黄酮生物合成和植物激素信号转导。在水分胁迫下,JM-262 中参与抗氧化和抗渗透胁迫的 DEGs 的数量和表达水平得到了更多的增强。此外,我们发现与根发育相关的 DEGs 在 JM-262 中在植物激素信号转导和碳代谢途径中被更多地诱导。总之,JM-262 可能通过产生更多的渗透保护剂、ROS 清除剂、生物量和能量来减轻干旱的损害。有趣的是,激素信号转导和串扰可能在促进 JM-262 形成更大的根系以吸收更多水分、诱导更多与干旱相关的 DEGs 的能力以及对氧化应激的更高抗性方面发挥重要作用。