Suppr超能文献

开发稳健神经网络模型的策略:以闪点预测为例。

Strategies to develop robust neural network models: Prediction of flash point as a case study.

机构信息

Department of Marine Geosystems, Geomar Helmholtz Center for Ocean Research Kiel, Wischhofstrasse 1-3, 24148, Kiel, Germany.

出版信息

Anal Chim Acta. 2018 Oct 5;1026:69-76. doi: 10.1016/j.aca.2018.05.015. Epub 2018 May 9.

Abstract

Artificial neural network (ANN) is one of the most widely used methods to develop accurate predictive models based on artificial intelligence and machine learning. In the present study, the important practical aspects of developing a reliable ANN model e.g. appropriate assignment of the number of neurons, number of hidden layers, transfer function, training algorithm, dataset division and initialization of the network are discussed. As a case study, predictability of the flash point for a dataset of 740 organic compounds using ANNs was investigated via a total number of 484220ANNs to allow covering a wide range of parameters affecting the performance of an ANN. Among all studied parameters, the number of neurons or layers was found to be the most important parameters to develop a reliable ANN with low overfitting risk. To evaluate appropriate number of neurons and layers, a value of equal or greater than 10 for the ratio of the training samples to the ANN constants was suggested as a rule of thumb. More ever, a strategy for evaluation of the authentic performance of ANNs and deciding about the reliability of an ANN model was proposed which is applicable to other models developed by supervised learning. Based on the introduced considerations, an ANN model was proposed for predicting the flash point of pure organic compounds. According to the results, the new model was found to produce the lowest error compared to other available models.

摘要

人工神经网络 (ANN) 是基于人工智能和机器学习开发准确预测模型的最广泛使用的方法之一。在本研究中,讨论了开发可靠 ANN 模型的重要实际方面,例如神经元数量、隐藏层数、转移函数、训练算法、数据集划分和网络初始化的适当分配。作为案例研究,通过总共 484220 个 ANN 研究了使用 ANN 预测 740 种有机化合物闪点的可预测性,以覆盖影响 ANN 性能的广泛参数。在所研究的所有参数中,发现神经元或层数是开发具有低过拟合风险的可靠 ANN 的最重要参数。为了评估适当的神经元和层数,可以建议将训练样本与 ANN 常数的比率等于或大于 10 作为经验法则。此外,还提出了一种评估 ANN 的真实性能并决定 ANN 模型可靠性的策略,该策略适用于其他通过监督学习开发的模型。基于引入的考虑因素,提出了一种用于预测纯有机化合物闪点的 ANN 模型。根据结果,与其他可用模型相比,新模型发现产生的误差最低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验