Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India.
Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.
PLoS One. 2018 Jun 1;13(6):e0196829. doi: 10.1371/journal.pone.0196829. eCollection 2018.
This paper describes a web server developed for designing therapeutic peptides with desired half-life in blood. In this study, we used 163 natural and 98 modified peptides whose half-life has been determined experimentally in mammalian blood, for developing in silico models. Firstly, models have been developed on 261 peptides containing natural and modified residues, using different chemical descriptors. The best model using 43 PaDEL descriptors got a maximum correlation of 0.692 between the predicted and the actual half-life peptides. Secondly, models were developed on 163 natural peptides using amino acid composition feature of peptides and achieved a maximum correlation of 0.643. Thirdly, models were developed on 163 natural peptides using chemical descriptors and attained a maximum correlation of 0.743 using 45 selected PaDEL descriptors. In order to assist researchers in the prediction and designing of half-life of peptides, the models developed have been integrated into PlifePred web server (http://webs.iiitd.edu.in//raghava/plifepred/).
本文描述了一个用于设计在血液中具有预期半衰期的治疗性肽的网络服务器。在这项研究中,我们使用了 163 种天然肽和 98 种修饰肽,这些肽的半衰期已经在哺乳动物血液中通过实验确定,用于开发计算模型。首先,我们使用不同的化学描述符在包含天然和修饰残基的 261 种肽上开发了模型。使用 43 个 PaDEL 描述符的最佳模型在预测和实际半衰期肽之间达到了 0.692 的最大相关性。其次,我们使用肽的氨基酸组成特征在 163 种天然肽上开发了模型,最大相关性为 0.643。第三,我们使用化学描述符在 163 种天然肽上开发了模型,使用 45 个选定的 PaDEL 描述符达到了 0.743 的最大相关性。为了帮助研究人员预测和设计肽的半衰期,我们将开发的模型集成到 PlifePred 网络服务器(http://webs.iiitd.edu.in//raghava/plifepred/)中。