Becton Matthew, Averett Rodney, Wang Xianqiao
College of Engineering, University of Georgia Athens, GA 30602, USA.
J Micromech Mol Phys. 2017 Jun;2(2). doi: 10.1142/S2424913017500084. Epub 2017 Jun 30.
Recent studies have shown that ultrasound is used to open drug-carrying liposomes to release their payloads; however, a shockwave energetic enough to rupture lipid membranes can cause collateral damage to surrounding cells. Similarly, a destructive shockwave, which may be used to rupture a cell membrane in order to lyse the cell (e.g., as in cancer treatments) may also impair or destroy nearby healthy tissue. To address this problem, we use dissipative particle dynamic (DPD) simulation to investigate the addition of a cavitation bubble between the shockwave and the model cell membrane to alter the shockwave front, allowing low-velocity shockwaves to specifically damage an intended target. We focus specifically on a spherical lipid bilayer model, and note the effect of shockwave velocity, bubble size, and orientation on the damage to the model cell. We show that a cavitation bubble greatly decreases the necessary shockwave velocity required to damage the lipid bilayer and rupture the model cell. The cavitation bubble focuses the kinetic energy of the shockwave front into a smaller area, inducing penetration at the edge of the model cell. With this work, we provide a comprehensive approach to the intricacies of model cell destruction via shockwave impact, and hope to offer a guideline for initiating targeted cellular destruction using induced cavitation bubbles and low-velocity shockwaves.
最近的研究表明,超声波被用于打开载药脂质体以释放其所含药物;然而,能量足以使脂质膜破裂的冲击波会对周围细胞造成附带损伤。同样,为了裂解细胞(例如在癌症治疗中)而可能用于破坏细胞膜的破坏性冲击波,也可能损害或破坏附近的健康组织。为了解决这个问题,我们使用耗散粒子动力学(DPD)模拟来研究在冲击波和模型细胞膜之间添加一个空化气泡,以改变冲击波前沿,使低速冲击波能够特异性地损伤预期目标。我们特别关注球形脂质双层模型,并记录冲击波速度、气泡大小和方向对模型细胞损伤的影响。我们表明,空化气泡大大降低了损伤脂质双层和使模型细胞破裂所需的冲击波速度。空化气泡将冲击波前沿的动能集中到一个较小的区域,在模型细胞边缘诱导穿透。通过这项工作,我们提供了一种全面的方法来处理通过冲击波冲击破坏模型细胞的复杂性,并希望为利用诱导空化气泡和低速冲击波启动靶向细胞破坏提供指导。