Suppr超能文献

利用有机场效应晶体管界面效应的光刺激突触器件。

Light-Stimulated Synaptic Devices Utilizing Interfacial Effect of Organic Field-Effect Transistors.

机构信息

Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education , Tongji University , Shanghai 201804 , P. R. China.

出版信息

ACS Appl Mater Interfaces. 2018 Jun 27;10(25):21472-21480. doi: 10.1021/acsami.8b05036. Epub 2018 Jun 14.

Abstract

Synaptic transistors stimulated by light waves or photons may offer advantages to the devices, such as wide bandwidth, ultrafast signal transmission, and robustness. However, previously reported light-stimulated synaptic devices generally require special photoelectric properties from the semiconductors and sophisticated device's architectures. In this work, a simple and effective strategy for fabricating light-stimulated synaptic transistors is provided by utilizing interface charge trapping effect of organic field-effect transistors (OFETs). Significantly, our devices exhibited highly synapselike behaviors, such as excitatory postsynaptic current (EPSC) and pair-pulse facilitation (PPF), and presented memory and learning ability. The EPSC decay, PPF curves, and forgetting behavior can be well expressed by mathematical equations for synaptic devices, indicating that interfacial charge trapping effect of OFETs can be utilized as a reliable strategy to realize organic light-stimulated synapses. Therefore, this work provides a simple and effective strategy for fabricating light-stimulated synaptic transistors with both memory and learning ability, which enlightens a new direction for developing neuromorphic devices.

摘要

由光波或光子刺激的突触晶体管可为器件带来诸多优势,例如宽带宽、超快速信号传输和稳健性。然而,先前报道的光刺激突触器件通常需要半导体的特殊光电性能和复杂的器件结构。在这项工作中,通过利用有机场效应晶体管(OFET)的界面电荷俘获效应,提供了一种制造光刺激突触晶体管的简单而有效的策略。值得注意的是,我们的器件表现出了高度类似突触的行为,如兴奋性突触后电流(EPSC)和成对脉冲易化(PPF),并表现出了记忆和学习能力。EPSC 衰减、PPF 曲线和遗忘行为可以用突触器件的数学方程很好地表示,这表明 OFET 的界面电荷俘获效应可以作为实现有机光刺激突触的可靠策略。因此,这项工作为制造具有记忆和学习能力的光刺激突触晶体管提供了一种简单而有效的策略,为开发神经形态器件开辟了新的方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验