Suppr超能文献

空气污染暴露模型决定因素中的误差与健康评估中的偏倚。

Error in air pollution exposure model determinants and bias in health estimates.

机构信息

Division of Environmental Epidemiology & Veterinary Public Health, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.

MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.

出版信息

J Expo Sci Environ Epidemiol. 2019 Mar;29(2):258-266. doi: 10.1038/s41370-018-0045-x. Epub 2018 Jun 8.

Abstract

BACKGROUND

Land use regression (LUR) models are commonly used in environmental epidemiology to assign spatially resolved estimates of air pollution to study participants. In this setting, estimated LUR model parameters are assumed to be transportable to a main study (the ''transportability assumption''). We provide an empirical illustration of how violation of this assumption can affect exposure predictions and bias health-effect estimates.

METHODS

We based our simulation on two existing LUR models, one for nitrogen dioxide, the other for particulate matter with aerodynamic diameter <2.5 μm. We assessed the impact of error in exposure determinants used in the LUR models on resultant air pollution predictions and on bias in an exposure-health-effect estimate assessed in a hypothetical cohort. We assigned error to predictors at monitoring sites (sites used to develop the LUR model) and at prediction sites (sites for which exposure predictions were needed), allowing for different error levels between site types.

RESULTS

Realistic error in the exposure determinants of the selected LUR models did not induce large additional error in exposure predictions and resulted in only minor (<1%) bias in health-effect estimates. Bias in the health-effect estimates strongly increased (up to 13.6%) when exposure determinant errors were different for monitoring sites than for prediction sites.

CONCLUSIONS

These results suggest that only modest reductions in bias in estimated exposure health-effects are to be expected from reducing error in exposure determinants. It is important to avoid heterogeneous errors in exposure determinants between monitoring sites and prediction sites to satisfy the transportability assumption and avoid bias in estimated exposure health-effects.

摘要

背景

在环境流行病学中,常使用土地利用回归(LUR)模型来为研究对象分配具有空间分辨率的空气污染估计值。在这种情况下,估计的 LUR 模型参数被假定为可转移到主要研究中(“可转移性假设”)。我们提供了一个实证示例,说明违反此假设如何影响暴露预测和偏倚健康效应估计。

方法

我们的模拟基于两个现有的 LUR 模型,一个用于二氧化氮,另一个用于空气动力学直径<2.5μm 的颗粒物。我们评估了 LUR 模型中使用的暴露决定因素的误差对由此产生的空气污染预测以及在假设队列中评估的暴露-健康效应估计的偏差的影响。我们在监测点(用于开发 LUR 模型的点)和预测点(需要进行暴露预测的点)为预测因子分配误差,允许两种类型的站点之间存在不同的误差水平。

结果

所选 LUR 模型的暴露决定因素中的现实误差不会在暴露预测中引起较大的额外误差,并且仅导致健康效应估计值的较小偏差(<1%)。当监测点的暴露决定因素误差与预测点的暴露决定因素误差不同时,健康效应估计的偏差会大大增加(高达 13.6%)。

结论

这些结果表明,从减少暴露决定因素的误差中,预计对估计的暴露健康效应的偏差只有适度的减少。为了满足可转移性假设并避免估计的暴露健康效应的偏差,避免监测点和预测点之间暴露决定因素的异质误差非常重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验