Suppr超能文献

超快纳米级拉曼温度测量证明加热不是等离子体驱动光催化的主要机制。

Ultrafast Nanoscale Raman Thermometry Proves Heating Is Not a Primary Mechanism for Plasmon-Driven Photocatalysis.

作者信息

Keller Emily L, Frontiera Renee R

机构信息

Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States.

出版信息

ACS Nano. 2018 Jun 26;12(6):5848-5855. doi: 10.1021/acsnano.8b01809. Epub 2018 Jun 8.

Abstract

Plasmonic materials efficiently convert light to various forms of energies for many applications, including photocatalysis, photovoltaics, and photothermal therapies. In particular, plasmonic photocatalysts hold incredible promise for highly selective sunlight-driven catalysis through the generation of highly energetic holes and electrons used to drive chemical reactions. However, plasmons are also known to generate heat, and the partitioning of photoexcitation energy into hot carriers and heat on molecularly relevant time scales is not well understood, yet plays a crucial role in designing and understanding these photocatalysts. Using an ultrafast surface-enhanced Raman thermometry technique, we probe the effective temperature, equivalent to the mode-specific increase of vibrational kinetic energy, of molecules adsorbed to gold nanoparticle aggregates in the most active hot spots on the picosecond time scale of chemical reactivity. This represents the first measurement of vibrational energy deposition for coupled molecular-plasmonic systems on the picosecond time scale of molecular motion. We find that upon plasmon excitation, the adsorbates in the hot spots undergo an initial energy transfer within several picoseconds that changes the effective temperature of the system by less than 100 K, even at peak flux values 10 times stronger than focused sunlight. The energy quickly dissipates from the adsorbates into the surroundings in less than 5 ps, even at the highest values of photoexcitation. This surprisingly modest energy transfer of the most active regions of the plasmonic materials on the ultrafast time scale decisively proves that most plasmonic photocatalysis is not primarily thermally driven.

摘要

等离子体材料能有效地将光转换为各种形式的能量,用于许多应用,包括光催化、光伏和光热疗法。特别是,等离子体光催化剂通过产生用于驱动化学反应的高能空穴和电子,在高选择性阳光驱动催化方面有着令人难以置信的前景。然而,等离子体也会产生热量,并且在分子相关的时间尺度上,光激发能量在热载流子和热量之间的分配还没有得到很好的理解,但在设计和理解这些光催化剂方面起着至关重要的作用。我们使用超快表面增强拉曼测温技术,在化学反应的皮秒时间尺度上,探测吸附在金纳米颗粒聚集体最活跃热点上的分子的有效温度,该温度相当于振动动能的模式特异性增加。这是在分子运动的皮秒时间尺度上对耦合分子 - 等离子体系统振动能量沉积的首次测量。我们发现,在等离子体激发时,热点中的吸附质在几皮秒内经历初始能量转移,即使在比聚焦太阳光强10倍的峰值通量值下,系统的有效温度变化也小于100K。即使在光激发的最高值下,能量也会在不到5皮秒的时间内从吸附质迅速耗散到周围环境中。在超快时间尺度上,等离子体材料最活跃区域的这种令人惊讶的适度能量转移决定性地证明,大多数等离子体光催化不是主要由热驱动的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验