Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Department of Nuclear Engineering, Texas A&M University, College Station, Texas 77843, USA.
Phys Rev Lett. 2018 May 25;120(21):216101. doi: 10.1103/PhysRevLett.120.216101.
The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ∼-30 °C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ∼0.1 eV, independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ∼0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.
固体中稳定辐射损伤的形成通常通过复杂的动态退火(DA)过程进行,涉及点缺陷的迁移和相互作用。即使对于硅,DA 对辐照条件的依赖性也仍未得到很好的理解。在这里,我们使用脉冲离子束方法研究了在从约-30°C至 210°C的温度范围内用质量范围从 Ne 到 Xe 的离子辐照的 Si 中的缺陷相互作用动力学,这些离子产生了不同密度的碰撞级联。我们证明,辐照条件对缺陷动力学的影响的复杂性可以简化为单个参数的确定性效应,该参数通过考虑碰撞级联的分形性质来计算,即平均级联密度。对于每种离子种类,DA 速率都表现出两个明确定义的 Arrhenius 区域,其中不同的 DA 机制占主导地位。这两个区域在临界温度处相交,该温度线性依赖于级联密度。低温 DA 区域的特征在于激活能约为 0.1 eV,与级联密度无关。然而,高温区域对于大于约 0.04 at.%的级联密度,表现出主导 DA 过程的变化,这可以通过激活能的增加来证明。这些结果清楚地表明了碰撞级联密度的关键作用,并可用于预测 Si 中的辐射缺陷动力学。