Suppr超能文献

使用 RNN 对异步事件序列进行建模。

Modeling asynchronous event sequences with RNNs.

机构信息

Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States.

Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States.

出版信息

J Biomed Inform. 2018 Jul;83:167-177. doi: 10.1016/j.jbi.2018.05.016. Epub 2018 Jun 5.

Abstract

Sequences of events have often been modeled with computational techniques, but typical preprocessing steps and problem settings do not explicitly address the ramifications of timestamped events. Clinical data, such as is found in electronic health records (EHRs), typically comes with timestamp information. In this work, we define event sequences and their properties: synchronicity, evenness, and co-cardinality; we then show how asynchronous, uneven, and multi-cardinal problem settings can support explicit accountings of relative time. Our evaluation uses the temporally sensitive clinical use case of pediatric asthma, which is a chronic disease with symptoms (and lack thereof) evolving over time. We show several approaches to explicitly incorporating relative time into a recurrent neural network (RNN) model that improve the overall classification of patients into those with no asthma, those with persistent asthma, those in long-term remission, and those who have experienced relapse. We also compare and contrast these results with those in an inpatient intensive care setting.

摘要

事件序列通常使用计算技术进行建模,但典型的预处理步骤和问题设置并没有明确解决时间戳事件的后果。临床数据,如电子健康记录 (EHR) 中通常带有时间戳信息。在这项工作中,我们定义了事件序列及其属性:同步性、均匀性和共同基数;然后展示了异步、不均匀和多基数问题设置如何支持相对时间的明确核算。我们的评估使用了儿科哮喘的时间敏感临床用例,这是一种慢性病,其症状(和缺乏症状)随时间演变。我们展示了几种方法,将相对时间明确纳入递归神经网络 (RNN) 模型中,以提高将患者总体分类为无哮喘、持续性哮喘、长期缓解和经历复发的患者的能力。我们还比较和对比了这些结果与住院重症监护环境中的结果。

相似文献

1
Modeling asynchronous event sequences with RNNs.
J Biomed Inform. 2018 Jul;83:167-177. doi: 10.1016/j.jbi.2018.05.016. Epub 2018 Jun 5.
2
Interpreting a recurrent neural network's predictions of ICU mortality risk.
J Biomed Inform. 2021 Feb;114:103672. doi: 10.1016/j.jbi.2021.103672. Epub 2021 Jan 7.
3
LSTM Model for Prediction of Heart Failure in Big Data.
J Med Syst. 2019 Mar 19;43(5):111. doi: 10.1007/s10916-019-1243-3.
4
Explicit Duration Recurrent Networks.
IEEE Trans Neural Netw Learn Syst. 2022 Jul;33(7):3120-3130. doi: 10.1109/TNNLS.2021.3051019. Epub 2022 Jul 6.
5
Modeling multivariate clinical event time-series with recurrent temporal mechanisms.
Artif Intell Med. 2021 Feb;112:102021. doi: 10.1016/j.artmed.2021.102021. Epub 2021 Jan 18.
7
Representation learning for clinical time series prediction tasks in electronic health records.
BMC Med Inform Decis Mak. 2019 Dec 17;19(Suppl 8):259. doi: 10.1186/s12911-019-0985-7.
8
Using recurrent neural network models for early detection of heart failure onset.
J Am Med Inform Assoc. 2017 Mar 1;24(2):361-370. doi: 10.1093/jamia/ocw112.
10
Deep learning predicts extreme preterm birth from electronic health records.
J Biomed Inform. 2019 Dec;100:103334. doi: 10.1016/j.jbi.2019.103334. Epub 2019 Oct 31.

引用本文的文献

1
Applications of flexible materials in health management assisted by machine learning.
RSC Adv. 2025 Jun 30;15(28):22386-22410. doi: 10.1039/d5ra02594j.
2
A Novel Time-Aware Deep Learning Model Predicting Myopia in Children and Adolescents.
Ophthalmol Sci. 2024 Jun 13;4(6):100563. doi: 10.1016/j.xops.2024.100563. eCollection 2024 Nov-Dec.
5
Assessment of Prediction Tasks and Time Window Selection in Temporal Modeling of Electronic Health Record Data: a Systematic Review.
J Healthc Inform Res. 2023 Aug 14;7(3):313-331. doi: 10.1007/s41666-023-00143-4. eCollection 2023 Sep.
6
KIT-LSTM: Knowledge-guided Time-aware LSTM for Continuous Clinical Risk Prediction.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:1086-1091. doi: 10.1109/bibm55620.2022.9994931.
8
Influential Usage of Big Data and Artificial Intelligence in Healthcare.
Comput Math Methods Med. 2021 Sep 6;2021:5812499. doi: 10.1155/2021/5812499. eCollection 2021.
9
RVAgene: generative modeling of gene expression time series data.
Bioinformatics. 2021 Oct 11;37(19):3252-3262. doi: 10.1093/bioinformatics/btab260.
10
Informative presence and observation in routine health data: A review of methodology for clinical risk prediction.
J Am Med Inform Assoc. 2021 Jan 15;28(1):155-166. doi: 10.1093/jamia/ocaa242.

本文引用的文献

1
Recurrent Neural Networks for Multivariate Time Series with Missing Values.
Sci Rep. 2018 Apr 17;8(1):6085. doi: 10.1038/s41598-018-24271-9.
2
Incorporating repeating temporal association rules in Naïve Bayes classifiers for coronary heart disease diagnosis.
J Biomed Inform. 2018 May;81:74-82. doi: 10.1016/j.jbi.2018.03.002. Epub 2018 Mar 16.
3
Ascertainment of asthma prognosis using natural language processing from electronic medical records.
J Allergy Clin Immunol. 2018 Jun;141(6):2292-2294.e3. doi: 10.1016/j.jaci.2017.12.1003. Epub 2018 Feb 10.
4
High-accuracy detection of airway obstruction in asthma using machine learning algorithms and forced oscillation measurements.
Comput Methods Programs Biomed. 2017 Jun;144:113-125. doi: 10.1016/j.cmpb.2017.03.023. Epub 2017 Mar 28.
5
Predicting healthcare trajectories from medical records: A deep learning approach.
J Biomed Inform. 2017 May;69:218-229. doi: 10.1016/j.jbi.2017.04.001. Epub 2017 Apr 12.
6
Temporal electronic phenotyping by mining careflows of breast cancer patients.
J Biomed Inform. 2017 Feb;66:136-147. doi: 10.1016/j.jbi.2016.12.012. Epub 2017 Jan 3.
7
Learning from heterogeneous temporal data in electronic health records.
J Biomed Inform. 2017 Jan;65:105-119. doi: 10.1016/j.jbi.2016.11.006. Epub 2016 Dec 2.
8
MIMIC-III, a freely accessible critical care database.
Sci Data. 2016 May 24;3:160035. doi: 10.1038/sdata.2016.35.
9
Distinguishing Asthma Phenotypes Using Machine Learning Approaches.
Curr Allergy Asthma Rep. 2015 Jul;15(7):38. doi: 10.1007/s11882-015-0542-0.
10
Parameterizing time in electronic health record studies.
J Am Med Inform Assoc. 2015 Jul;22(4):794-804. doi: 10.1093/jamia/ocu051. Epub 2015 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验