Suppr超能文献

KIT-LSTM:用于连续临床风险预测的知识引导时间感知长短期记忆网络

KIT-LSTM: Knowledge-guided Time-aware LSTM for Continuous Clinical Risk Prediction.

作者信息

Liu Lucas Jing, Ortiz-Soriano Victor, Neyra Javier A, Chen Jin

机构信息

Department of Computer Science University of Kentucky, Lexington, KY, USA.

Department of Internal Medicine Brookwood Baptist Health, Birmingham, AL, USA.

出版信息

Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:1086-1091. doi: 10.1109/bibm55620.2022.9994931.

Abstract

Rapid accumulation of temporal Electronic Health Record (EHR) data and recent advances in deep learning have shown high potential in precisely and timely predicting patients' risks using AI. However, most existing risk prediction approaches ignore the complex asynchronous and irregular problems in real-world EHR data. This paper proposes a novel approach called Knowledge-guIded Time-aware LSTM (KIT-LSTM) for continuous mortality predictions using EHR. KIT-LSTM extends LSTM with two time-aware gates and a knowledge-aware gate to better model EHR and interprets results. Experiments on real-world data for patients with acute kidney injury with dialysis (AKI-D) demonstrate that KIT-LSTM performs better than the state-of-the-art methods for predicting patients' risk trajectories and model interpretation. KIT-LSTM can better support timely decision-making for clinicians.

摘要

电子健康记录(EHR)数据的快速积累以及深度学习的最新进展表明,利用人工智能精确且及时地预测患者风险具有很高的潜力。然而,大多数现有的风险预测方法忽略了真实世界EHR数据中复杂的异步和不规则问题。本文提出了一种名为知识引导的时间感知长短期记忆网络(KIT-LSTM)的新方法,用于使用EHR进行连续死亡率预测。KIT-LSTM通过两个时间感知门和一个知识感知门扩展了长短期记忆网络,以更好地对EHR进行建模并解释结果。对急性肾损伤伴透析(AKI-D)患者的真实世界数据进行的实验表明,KIT-LSTM在预测患者风险轨迹和模型解释方面比现有最先进的方法表现更好。KIT-LSTM可以更好地支持临床医生及时做出决策。

相似文献

1
KIT-LSTM: Knowledge-guided Time-aware LSTM for Continuous Clinical Risk Prediction.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:1086-1091. doi: 10.1109/bibm55620.2022.9994931.
5
LSTM Model for Prediction of Heart Failure in Big Data.
J Med Syst. 2019 Mar 19;43(5):111. doi: 10.1007/s10916-019-1243-3.
6
An integrated LSTM-HeteroRGNN model for interpretable opioid overdose risk prediction.
Artif Intell Med. 2023 Jan;135:102439. doi: 10.1016/j.artmed.2022.102439. Epub 2022 Nov 3.
7
Predicting Age-Related Macular Degeneration Progression with Contrastive Attention and Time-Aware LSTM.
KDD. 2022 Aug;2022:4402-4412. doi: 10.1145/3534678.3539163. Epub 2022 Aug 14.
8
Exploring the potential of deep learning models integrating transformer and LSTM in predicting blood glucose levels for T1D patients.
Digit Health. 2025 Apr 3;11:20552076251328980. doi: 10.1177/20552076251328980. eCollection 2025 Jan-Dec.
10
Deep learning prediction models based on EHR trajectories: A systematic review.
J Biomed Inform. 2023 Aug;144:104430. doi: 10.1016/j.jbi.2023.104430. Epub 2023 Jun 26.

引用本文的文献

1
RiskPath: Explainable deep learning for multistep biomedical prediction in longitudinal data.
Patterns (N Y). 2025 Apr 28;6(8):101240. doi: 10.1016/j.patter.2025.101240. eCollection 2025 Aug 8.
3
Multi-modal prediction of extracorporeal support-a resource intensive therapy, utilizing a large national database.
JAMIA Open. 2025 Jan 6;8(1):ooae158. doi: 10.1093/jamiaopen/ooae158. eCollection 2025 Feb.
4
Acute Kidney Injury Prognosis Prediction Using Machine Learning Methods: A Systematic Review.
Kidney Med. 2024 Nov 15;7(1):100936. doi: 10.1016/j.xkme.2024.100936. eCollection 2025 Jan.
5
: Explainable deep learning for multistep biomedical prediction in longitudinal data.
medRxiv. 2024 Dec 26:2024.09.19.24313909. doi: 10.1101/2024.09.19.24313909.
6
A Novel Time-Aware Deep Learning Model Predicting Myopia in Children and Adolescents.
Ophthalmol Sci. 2024 Jun 13;4(6):100563. doi: 10.1016/j.xops.2024.100563. eCollection 2024 Nov-Dec.
7
TA-RNN: an attention-based time-aware recurrent neural network architecture for electronic health records.
Bioinformatics. 2024 Jun 28;40(Suppl 1):i169-i179. doi: 10.1093/bioinformatics/btae264.

本文引用的文献

2
CLEP: a hybrid data- and knowledge-driven framework for generating patient representations.
Bioinformatics. 2021 Oct 11;37(19):3311-3318. doi: 10.1093/bioinformatics/btab340.
3
Predicting acute kidney injury in critically ill patients using comorbid conditions utilizing machine learning.
Clin Kidney J. 2020 Sep 30;14(5):1428-1435. doi: 10.1093/ckj/sfaa145. eCollection 2021 May.
4
GRAM: Graph-based Attention Model for Healthcare Representation Learning.
KDD. 2017 Aug;2017:787-795. doi: 10.1145/3097983.3098126.
5
The Human Phenotype Ontology in 2021.
Nucleic Acids Res. 2021 Jan 8;49(D1):D1207-D1217. doi: 10.1093/nar/gkaa1043.
6
Utilization of Deep Learning for Subphenotype Identification in Sepsis-Associated Acute Kidney Injury.
Clin J Am Soc Nephrol. 2020 Nov 6;15(11):1557-1565. doi: 10.2215/CJN.09330819. Epub 2020 Oct 8.
8
9
Medical Big Data Is Not Yet Available: Why We Need Realism Rather than Exaggeration.
Endocrinol Metab (Seoul). 2019 Dec;34(4):349-354. doi: 10.3803/EnM.2019.34.4.349.
10
Artificial intelligence in healthcare.
Nat Biomed Eng. 2018 Oct;2(10):719-731. doi: 10.1038/s41551-018-0305-z. Epub 2018 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验