Liu Lucas Jing, Ortiz-Soriano Victor, Neyra Javier A, Chen Jin
Department of Computer Science University of Kentucky, Lexington, KY, USA.
Department of Internal Medicine Brookwood Baptist Health, Birmingham, AL, USA.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:1086-1091. doi: 10.1109/bibm55620.2022.9994931.
Rapid accumulation of temporal Electronic Health Record (EHR) data and recent advances in deep learning have shown high potential in precisely and timely predicting patients' risks using AI. However, most existing risk prediction approaches ignore the complex asynchronous and irregular problems in real-world EHR data. This paper proposes a novel approach called Knowledge-guIded Time-aware LSTM (KIT-LSTM) for continuous mortality predictions using EHR. KIT-LSTM extends LSTM with two time-aware gates and a knowledge-aware gate to better model EHR and interprets results. Experiments on real-world data for patients with acute kidney injury with dialysis (AKI-D) demonstrate that KIT-LSTM performs better than the state-of-the-art methods for predicting patients' risk trajectories and model interpretation. KIT-LSTM can better support timely decision-making for clinicians.
电子健康记录(EHR)数据的快速积累以及深度学习的最新进展表明,利用人工智能精确且及时地预测患者风险具有很高的潜力。然而,大多数现有的风险预测方法忽略了真实世界EHR数据中复杂的异步和不规则问题。本文提出了一种名为知识引导的时间感知长短期记忆网络(KIT-LSTM)的新方法,用于使用EHR进行连续死亡率预测。KIT-LSTM通过两个时间感知门和一个知识感知门扩展了长短期记忆网络,以更好地对EHR进行建模并解释结果。对急性肾损伤伴透析(AKI-D)患者的真实世界数据进行的实验表明,KIT-LSTM在预测患者风险轨迹和模型解释方面比现有最先进的方法表现更好。KIT-LSTM可以更好地支持临床医生及时做出决策。