Suppr超能文献

基于坐标不变机器学习的细菌趋化性迁移的数据分析发现。

Data-driven discovery of chemotactic migration of bacteria via coordinate-invariant machine learning.

机构信息

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.

Department of Mathematics and Statistics, California State University, Long Beach, Long Beach, CA, USA.

出版信息

BMC Bioinformatics. 2024 Oct 24;25(1):337. doi: 10.1186/s12859-024-05929-w.

Abstract

BACKGROUND

E. coli chemotactic motion in the presence of a chemonutrient field can be studied using wet laboratory experiments or macroscale-level partial differential equations (PDEs) (among others). Bridging experimental measurements and chemotactic Partial Differential Equations requires knowledge of the evolution of all underlying fields, initial and boundary conditions, and often necessitates strong assumptions. In this work, we propose machine learning approaches, along with ideas from the Whitney and Takens embedding theorems, to circumvent these challenges.

RESULTS

Machine learning approaches for identifying underlying PDEs were (a) validated through the use of simulation data from established continuum models and (b) used to infer chemotactic PDEs from experimental data. Such data-driven models were surrogates either for the entire chemotactic PDE right-hand-side (black box models), or, in a more targeted fashion, just for the chemotactic term (gray box models). Furthermore, it was demonstrated that a short history of bacterial density may compensate for the missing measurements of the field of chemonutrient concentration. In fact, given reasonable conditions, such a short history of bacterial density measurements could even be used to infer chemonutrient concentration.

CONCLUSION

Data-driven PDEs are an important modeling tool when studying Chemotaxis at the macroscale, as they can learn bacterial motility from various data sources, fidelities (here, computational models, experiments) or coordinate systems. The resulting data-driven PDEs can then be simulated to reproduce/predict computational or experimental bacterial density profile data independent of the coordinate system, approximate meaningful parameters or functional terms, and even possibly estimate the underlying (unmeasured) chemonutrient field evolution.

摘要

背景

在有化学营养场的情况下,大肠杆菌的趋化运动可以通过实验室实验或宏观尺度偏微分方程(PDE)等方法进行研究。将实验测量与趋化偏微分方程联系起来需要了解所有基础场的演变、初始和边界条件,并且通常需要进行强假设。在这项工作中,我们提出了机器学习方法,并结合惠特尼和塔肯嵌入定理的思想,以规避这些挑战。

结果

用于识别基础 PDE 的机器学习方法(a)通过使用来自已建立的连续体模型的模拟数据进行了验证,(b)用于从实验数据推断趋化 PDE。这种数据驱动的模型要么是趋化 PDE 右半部分的替代物(黑盒模型),要么更有针对性地仅针对趋化项(灰盒模型)。此外,还证明了细菌密度的短历史可以弥补化学营养浓度场的缺失测量。事实上,在合理的条件下,这种细菌密度测量的短历史甚至可以用于推断化学营养浓度。

结论

当在宏观尺度上研究趋化作用时,数据驱动的 PDE 是一种重要的建模工具,因为它们可以从各种数据源、保真度(这里是计算模型、实验)或坐标系中学习细菌的运动。然后可以模拟生成的数据驱动 PDE 来再现/预测计算或实验细菌密度分布数据,而无需考虑坐标系、近似有意义的参数或函数项,甚至可能估计基础(未测量)化学营养场的演变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94c/11515320/6c23536a7c00/12859_2024_5929_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验