Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA.
Nanoscale. 2018 Jun 21;10(24):11506-11516. doi: 10.1039/c8nr03684e.
Baker's yeast, S. cerevisiae, is a model organism that is used in synthetic biology. The work demonstrates how GaN nanostructured thin films can encode physiological responses in S. cerevisiae yeast. The Ga-polar, n-type, GaN thin films are characterized via Photocurrent Measurements, Atomic Force Microscopy and Kelvin Probe Force Microscopy. UV light is used to induce persistent photoconductivity that results in charge accumulation on the surface. The morphological, chemical and electronic properties of the nanostructured films are utilized to activate the cell wall integrity pathway and alter the amount of chitin produced by the yeast. The encoded cell responses are induced by the semiconductor interfacial properties associated with nanoscale topography and the accumulation of charge on the surface that promotes the build-up of oxygen species and in turn cause a hyperoxia related change in the yeast. The thin films can also alter the membrane voltage of yeast. The observed modulation of the membrane voltage of the yeast exposed to different GaN samples supports the notion that the semiconductor material can cause cell polarization. The results thus define a strategy for bioelectronics communication where the roughness, surface chemistry and charge of the wide band gap semiconductor's thin film surface initiate the encoding of the yeast response.
贝克氏酵母(Saccharomyces cerevisiae)是一种模式生物,常用于合成生物学研究。本工作展示了 GaN 纳米结构薄膜如何对酿酒酵母(Saccharomyces cerevisiae)进行生理响应编码。Ga 极性、n 型 GaN 薄膜通过光电电流测量、原子力显微镜和 Kelvin 探针力显微镜进行了表征。紫外光用于诱导持久光电导,导致表面电荷积累。利用纳米结构薄膜的形貌、化学和电子特性来激活细胞壁完整性途径,并改变酵母产生的壳聚糖量。编码的细胞反应是由与纳米级形貌相关的半导体界面特性以及表面电荷积累引起的,这促进了氧物种的积累,进而导致酵母发生与高氧相关的变化。薄膜还可以改变酵母的膜电压。暴露于不同 GaN 样品的酵母的膜电压的观察到的调制支持这样一种观点,即半导体材料可以引起细胞极化。因此,这些结果定义了一种生物电子学通信策略,其中宽带隙半导体薄膜表面的粗糙度、表面化学和电荷引发了酵母响应的编码。