Suppr超能文献

基于先验信息的术后乳腺癌放疗肿瘤床临床靶区自动勾画。

Prior information guided auto-segmentation of clinical target volume of tumor bed in postoperative breast cancer radiotherapy.

机构信息

Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.

Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No 420, Fuma Road, Jinan District, Fuzhou, 350011, China.

出版信息

Radiat Oncol. 2023 Oct 15;18(1):170. doi: 10.1186/s13014-023-02355-9.

Abstract

BACKGROUND

Accurate delineation of clinical target volume of tumor bed (CTV-TB) is important but it is also challenging due to surgical effects and soft tissue contrast. Recently a few auto-segmentation methods were developed to improve the process. However, those methods had comparatively low segmentation accuracy. In this study the prior information was introduced to aid auto-segmentation of CTV-TB based on a deep-learning model.

METHODS

To aid the delineation of CTV-TB, the tumor contour on preoperative CT was transformed onto postoperative CT via deformable image registration. Both original and transformed tumor contours were used for prior information in training an auto-segmentation model. Then, the CTV-TB contour on postoperative CT was predicted by the model. 110 pairs of preoperative and postoperative CT images were used with a 5-fold cross-validation strategy. The predicted contour was compared with the clinically approved contour for accuracy evaluation using dice similarity coefficient (DSC) and Hausdorff distance.

RESULTS

The average DSC of the deep-learning model with prior information was improved than the one without prior information (0.808 vs. 0.734, P < 0.05). The average DSC of the deep-learning model with prior information was higher than that of the traditional method (0.808 vs. 0.622, P < 0.05).

CONCLUSIONS

The introduction of prior information in deep-learning model can improve segmentation accuracy of CTV-TB. The proposed method provided an effective way to automatically delineate CTV-TB in postoperative breast cancer radiotherapy.

摘要

背景

准确勾画肿瘤床临床靶区(CTV-TB)非常重要,但由于手术影响和软组织对比度的原因,这也是一项具有挑战性的工作。最近,已经开发出了一些自动分割方法来改善这一过程。然而,这些方法的分割准确性相对较低。在这项研究中,引入了先验信息来辅助基于深度学习模型的 CTV-TB 自动分割。

方法

为了辅助 CTV-TB 的勾画,通过变形图像配准将术前 CT 上的肿瘤轮廓转换到术后 CT 上。原始和转换后的肿瘤轮廓均用于训练自动分割模型的先验信息。然后,通过该模型预测术后 CT 上的 CTV-TB 轮廓。使用 5 折交叉验证策略,共使用了 110 对术前和术后 CT 图像。使用 Dice 相似系数(DSC)和 Hausdorff 距离来评估预测轮廓与临床认可轮廓的准确性。

结果

具有先验信息的深度学习模型的平均 DSC 优于没有先验信息的模型(0.808 比 0.734,P<0.05)。具有先验信息的深度学习模型的平均 DSC 高于传统方法(0.808 比 0.622,P<0.05)。

结论

在深度学习模型中引入先验信息可以提高 CTV-TB 的分割准确性。该方法为术后乳腺癌放疗中自动勾画 CTV-TB 提供了一种有效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f60f/10577969/75ee43a3ba8c/13014_2023_2355_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验