International School for Advanced Studies (SISSA), Trieste, Italy.
Walter Schottky Institut and Physik-Department, Technische Universität München, Garching, Germany.
Nat Nanotechnol. 2018 Aug;13(8):755-764. doi: 10.1038/s41565-018-0163-6. Epub 2018 Jun 11.
The use of graphene-based materials to engineer sophisticated biosensing interfaces that can adapt to the central nervous system requires a detailed understanding of how such materials behave in a biological context. Graphene's peculiar properties can cause various cellular changes, but the underlying mechanisms remain unclear. Here, we show that single-layer graphene increases neuronal firing by altering membrane-associated functions in cultured cells. Graphene tunes the distribution of extracellular ions at the interface with neurons, a key regulator of neuronal excitability. The resulting biophysical changes in the membrane include stronger potassium ion currents, with a shift in the fraction of neuronal firing phenotypes from adapting to tonically firing. By using experimental and theoretical approaches, we hypothesize that the graphene-ion interactions that are maximized when single-layer graphene is deposited on electrically insulating substrates are crucial to these effects.
使用基于石墨烯的材料来设计能够适应中枢神经系统的复杂生物传感界面,需要详细了解此类材料在生物环境中的行为。石墨烯的特殊性质会引起各种细胞变化,但潜在机制尚不清楚。在这里,我们表明,单层石墨烯通过改变培养细胞中的膜相关功能来增加神经元的放电。石墨烯调节了与神经元界面处的细胞外离子分布,这是神经元兴奋性的关键调节剂。膜中的这种生物物理变化包括更强的钾离子电流,以及神经元放电表型从适应到持续放电的部分发生转变。通过使用实验和理论方法,我们假设当单层石墨烯沉积在电绝缘基底上时,石墨烯-离子相互作用最大化,这对这些效应至关重要。