Suppr超能文献

Junín 病毒宿主白足鼠的有效种群大小差异:与阿根廷出血热的流行病学史的关系。

Effective Population Size Differences in , the Host of Junín Virus: Their Relationship with the Epidemiological History of Argentine Hemorrhagic Fever.

机构信息

Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.

Cátedra de Genética de Poblaciones y Evolución, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.

出版信息

Am J Trop Med Hyg. 2018 Aug;99(2):445-450. doi: 10.4269/ajtmh.17-0838. Epub 2018 Jun 7.

Abstract

Argentine hemorrhagic fever (AHF) is a serious endemic disease in Argentina, produced by Junín virus, whose host is the Sigmodontinae rodent . Within the endemic area, human incidence and proportion of infected rodents remains high for 5-10 years after the first appearance of the disease (epidemic [E] zone) and then gradually declines to sporadic cases (historic [H] zone). We tested the hypothesis that host populations within the E zone are large and well connected by gene flow, facilitating the transmission and maintenance of the virus, whereas those in the H and nonendemic (NE) zones are small and isolated, with the opposite effect. We estimated parameters affected by levels of gene flow and population size in 14 populations of : population effective size (), genetic variability, and mean relatedness. Our hypothesis was not supported: the lowest levels of variability and of and the highest genetic relatedness among individuals were found in the H zone. Populations from the NE zone displayed opposite results, whereas those in the E zone showed intermediate values. If we consider that populations are first NE, then E, and finally H, a correlative decrease in was observed. Chronically infected females have a low reproductive success. We propose that this would lower because each cohort would originate from a fraction of females of the previous generation, and affect other factors such as proportion of individuals that develop acute infection, probability of viral transmission, and evolution of virulence, which would explain, at least partly, the changing incidence of AHF.

摘要

阿根廷出血热(AHF)是阿根廷的一种严重地方性疾病,由胡宁病毒引起,其宿主是 Sigmodontinae 啮齿动物。在流行地区,疾病首次出现后 5-10 年内,人类发病率和感染啮齿动物的比例仍然很高(流行[E]区),然后逐渐下降到散发病例(历史[H]区)。我们检验了以下假设:E 区的宿主种群数量大,基因流动良好,有利于病毒的传播和维持,而 H 区和非流行(NE)区的宿主种群数量小且隔离,产生相反的效果。我们估计了 14 个种群的参数,这些参数受到基因流动和种群大小水平的影响:种群有效大小(Ne)、遗传变异和平均亲缘关系。我们的假设没有得到支持:在 H 区发现了最低水平的变异性和 Ne 和最高的个体遗传相关性。来自 NE 区的种群表现出相反的结果,而 E 区的种群则表现出中间值。如果我们认为种群首先是 NE,然后是 E,最后是 H,则观察到 Ne 呈相关性下降。慢性感染的雌性繁殖成功率低。我们提出,这将降低 Ne,因为每个群体都源自前一代雌性的一部分,并且还会影响其他因素,例如发展为急性感染的个体比例、病毒传播的概率和毒力的进化,这至少可以部分解释 AHF 发病率的变化。

相似文献

3
A longitudinal study of Junin virus activity in the rodent reservoir of Argentine hemorrhagic fever.
Am J Trop Med Hyg. 1992 Dec;47(6):749-63. doi: 10.4269/ajtmh.1992.47.749.
7
Junin virus activity in rodents from endemic and nonendemic loci in central Argentina.
Am J Trop Med Hyg. 1991 Jun;44(6):589-97. doi: 10.4269/ajtmh.1991.44.589.
8
Epidemiology of Argentine hemorrhagic fever.
Eur J Epidemiol. 1988 Jun;4(2):259-74. doi: 10.1007/BF00144764.
9
Gene flow among Calomys musculinus (Rodentia, Muridae) populations in Argentina.
Genetica. 2002;114(1):63-72. doi: 10.1023/a:1014620707407.

引用本文的文献

2
A review of emerging health threats from zoonotic New World mammarenaviruses.
BMC Microbiol. 2024 Apr 4;24(1):115. doi: 10.1186/s12866-024-03257-w.
3
A Review of Mammarenaviruses and Rodent Reservoirs in the Americas.
Ecohealth. 2022 Mar;19(1):22-39. doi: 10.1007/s10393-022-01580-0. Epub 2022 Mar 5.

本文引用的文献

1
2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education.
J Mammal. 2016 Jun 9;97(3):663-688. doi: 10.1093/jmammal/gyw078. Epub 2016 May 28.
2
ESTIMATING RELATEDNESS USING GENETIC MARKERS.
Evolution. 1989 Mar;43(2):258-275. doi: 10.1111/j.1558-5646.1989.tb04226.x.
3
Age-related effects of chronic hantavirus infection on female host fecundity.
J Anim Ecol. 2015 Sep;84(5):1264-72. doi: 10.1111/1365-2656.12387. Epub 2015 Jun 15.
4
Detecting past changes of effective population size.
Evol Appl. 2014 Jun;7(6):663-81. doi: 10.1111/eva.12170. Epub 2014 Jun 16.
5
Sin Nombre hantavirus decreases survival of male deer mice.
Oecologia. 2012 Jun;169(2):431-9. doi: 10.1007/s00442-011-2219-2. Epub 2012 Jan 5.
6
Landscape genetics highlights the role of bank vole metapopulation dynamics in the epidemiology of Puumala hantavirus.
Mol Ecol. 2011 Sep;20(17):3569-83. doi: 10.1111/j.1365-294X.2011.05199.x. Epub 2011 Aug 8.
7
The landscape genetics of infectious disease emergence and spread.
Mol Ecol. 2010 Sep;19(17):3515-31. doi: 10.1111/j.1365-294X.2010.04679.x. Epub 2010 Jul 7.
8
Analytical methods for quantifying environmental connectivity for the control and surveillance of infectious disease spread.
J R Soc Interface. 2010 Aug 6;7(49):1181-93. doi: 10.1098/rsif.2009.0523. Epub 2010 Feb 17.
9
Seasonal variation in Sin Nombre virus infections in deer mice: preliminary results.
J Wildl Dis. 2009 Apr;45(2):430-6. doi: 10.7589/0090-3558-45.2.430.
10
MsatAllele_1.0: An R package to visualize the binning of microsatellite alleles.
J Hered. 2009 May-Jun;100(3):394-7. doi: 10.1093/jhered/esn110. Epub 2009 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验