Suppr超能文献

LRRK2 与线粒体:最新进展与当前观点。

LRRK2 and mitochondria: Recent advances and current views.

机构信息

Department of Neuroscience, Thomas Jefferson University, Philadelphia, United States.

Department of Neuroscience, Thomas Jefferson University, Philadelphia, United States.

出版信息

Brain Res. 2019 Jan 1;1702:96-104. doi: 10.1016/j.brainres.2018.06.010. Epub 2018 Jun 9.

Abstract

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene account for most common causes of familial and sporadic Parkinson's disease (PD) and are one of the strongest genetic risk factors in sporadic PD. Pathways implicated in LRRK2-dependent neurodegeneration include cytoskeletal dynamics, vesicular trafficking, autophagy, mitochondria, and calcium homeostasis. However, the exact molecular mechanisms still need to be elucidated. Both genetic and environmental causes of PD have highlighted the importance of mitochondrial dysfunction in the pathogenesis of PD. Mitochondrial impairment has been observed in fibroblasts and iPSC-derived neural cells from PD patients with LRRK2 mutations, and LRRK2 has been shown to localize to mitochondria and to regulate its function. In this review we discuss recent discoveries relating to LRRK2 mutations and mitochondrial dysfunction.

摘要

LRRK2 基因中的突变是家族性和散发性帕金森病 (PD) 的最常见原因之一,也是散发性 PD 最强的遗传风险因素之一。LRRK2 依赖性神经退行性变所涉及的途径包括细胞骨架动力学、囊泡运输、自噬、线粒体和钙动态平衡。然而,确切的分子机制仍需要阐明。PD 的遗传和环境原因都强调了线粒体功能障碍在 PD 发病机制中的重要性。在具有 LRRK2 突变的 PD 患者的成纤维细胞和 iPSC 衍生的神经细胞中观察到线粒体损伤,并且已经表明 LRRK2 定位于线粒体并调节其功能。在这篇综述中,我们讨论了与 LRRK2 突变和线粒体功能障碍相关的最新发现。

相似文献

1
LRRK2 and mitochondria: Recent advances and current views.
Brain Res. 2019 Jan 1;1702:96-104. doi: 10.1016/j.brainres.2018.06.010. Epub 2018 Jun 9.
2
Mitochondrial Calcium Dysregulation Contributes to Dendrite Degeneration Mediated by PD/LBD-Associated LRRK2 Mutants.
J Neurosci. 2017 Nov 15;37(46):11151-11165. doi: 10.1523/JNEUROSCI.3791-16.2017. Epub 2017 Oct 16.
3
LRRK2 kinase inhibition protects against Parkinson's disease-associated environmental toxicants.
Neurobiol Dis. 2024 Jun 15;196:106522. doi: 10.1016/j.nbd.2024.106522. Epub 2024 May 3.
4
Parkinson's disease and mitophagy: an emerging role for LRRK2.
Biochem Soc Trans. 2021 Apr 30;49(2):551-562. doi: 10.1042/BST20190236.
5
The Cell Biology of LRRK2 in Parkinson's Disease.
Mol Cell Biol. 2021 Apr 22;41(5). doi: 10.1128/MCB.00660-20.
6
Dietary Amino Acids Impact LRRK2-Induced Neurodegeneration in Parkinson's Disease Models.
J Neurosci. 2020 Aug 5;40(32):6234-6249. doi: 10.1523/JNEUROSCI.2809-19.2020. Epub 2020 Jun 30.
7
Neural Stem Cells of Parkinson's Disease Patients Exhibit Aberrant Mitochondrial Morphology and Functionality.
Stem Cell Reports. 2019 May 14;12(5):878-889. doi: 10.1016/j.stemcr.2019.03.004. Epub 2019 Apr 11.
9
Dopaminergic neurodegeneration induced by Parkinson's disease-linked G2019S LRRK2 is dependent on kinase and GTPase activity.
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17296-17307. doi: 10.1073/pnas.1922184117. Epub 2020 Jul 6.
10
The Upshot of LRRK2 Inhibition to Parkinson's Disease Paradigm.
Mol Neurobiol. 2015 Dec;52(3):1804-1820. doi: 10.1007/s12035-014-8980-6. Epub 2014 Nov 15.

引用本文的文献

1
Recent advances in targeting LRRK2 for Parkinson's disease treatment.
J Transl Med. 2025 Jul 8;23(1):754. doi: 10.1186/s12967-025-06354-0.
2
Driving Therapeutic Innovation in Neurodegenerative Disease With Hydrogen Deuterium eXchange Mass Spectrometry.
Mol Cell Proteomics. 2025 Jun 20;24(8):101017. doi: 10.1016/j.mcpro.2025.101017.
3
The Mitochondrial Foundations of Parkinson's Disease: Therapeutic Implications.
Aging Dis. 2025 Apr 28;16(5):2695-2720. doi: 10.14336/AD.2025.0440.
6
The Multifaceted Role of LRRK2 in Parkinson's Disease.
Brain Sci. 2025 Apr 17;15(4):407. doi: 10.3390/brainsci15040407.
9
Small Molecules Targeting Mitochondria: A Mechanistic Approach to Combating Doxorubicin-Induced Cardiotoxicity.
Cardiovasc Toxicol. 2025 Feb;25(2):216-247. doi: 10.1007/s12012-024-09941-7. Epub 2024 Nov 4.

本文引用的文献

1
The LRRK2 Variant E193K Prevents Mitochondrial Fission Upon MPP+ Treatment by Altering LRRK2 Binding to DRP1.
Front Mol Neurosci. 2018 Feb 28;11:64. doi: 10.3389/fnmol.2018.00064. eCollection 2018.
2
Nimodipine attenuates the parkinsonian neurotoxin, MPTP-induced changes in the calcium binding proteins, calpain and calbindin.
J Chem Neuroanat. 2019 Jan;95:89-94. doi: 10.1016/j.jchemneu.2018.02.001. Epub 2018 Feb 7.
3
The genetic architecture of mitochondrial dysfunction in Parkinson's disease.
Cell Tissue Res. 2018 Jul;373(1):21-37. doi: 10.1007/s00441-017-2768-8. Epub 2018 Jan 25.
4
Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis.
Nature. 2018 Feb 15;554(7692):382-386. doi: 10.1038/nature25486. Epub 2018 Jan 24.
5
The LRRK2 signalling system.
Cell Tissue Res. 2018 Jul;373(1):39-50. doi: 10.1007/s00441-017-2759-9. Epub 2018 Jan 8.
6
Decreased Sirtuin Deacetylase Activity in LRRK2 G2019S iPSC-Derived Dopaminergic Neurons.
Stem Cell Reports. 2017 Dec 12;9(6):1839-1852. doi: 10.1016/j.stemcr.2017.10.010. Epub 2017 Nov 9.
7
Mitochondrial Calcium Dysregulation Contributes to Dendrite Degeneration Mediated by PD/LBD-Associated LRRK2 Mutants.
J Neurosci. 2017 Nov 15;37(46):11151-11165. doi: 10.1523/JNEUROSCI.3791-16.2017. Epub 2017 Oct 16.
10
Mitochondrial DNA and primary mitochondrial dysfunction in Parkinson's disease.
Mov Disord. 2017 Mar;32(3):346-363. doi: 10.1002/mds.26966. Epub 2017 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验