Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway.
Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway.
Sci Total Environ. 2018 Nov 15;642:190-197. doi: 10.1016/j.scitotenv.2018.06.017. Epub 2018 Jun 9.
Biochar, produced through pyrolysis of organic matter, is negatively charged, thus contributing to electrostatic adsorption of cations. However, due to its porous structure and contents of alkaline ashes, the determination of the cation exchange capacity (CEC) is challenging. Literature values for the CEC of biochar are surprisingly variable and are often poorly reproducible, suggesting methodological problems. Here, we modify and critically assess different steps in the existing ammonium acetate (NHOAc) method (pH 7), where ammonium (NH) is displaced by potassium chloride (KCl), following removal of excess NHOAc with isopropanol, in batch mode. We used pigeon pea biochar to develop the method and conducted a test on three additional biochars with different acid neutralizing capacity. A pretreatment step of biochar was introduced, using diluted hydrochloric acid, to decrease biochar pH to near neutral, so that 1 M NHOAc effectively buffers the biochar suspension pH at 7. This allows the CEC of all biochars to be determined at pH 7, which is crucial for biochar comparison. The dissolution of ashes may cause relatively large weight losses (e.g. for cacao shell biochar), which need to be accounted for when computing the CEC of raw biochar. The sum of NHOAC-extractable base cations provided a smaller and better estimate of the CEC than KCl-extractable NH. We hypothesize that the overestimation of the CEC based on KCl-extractable NH is due to the ineffectiveness of the relatively large isopropanol molecules to remove excess NHOAc in biochars rich in micro-pores, due to size exclusion. The amount of base cations removed in the pretreatment was about three (rice husk biochar) to ten times (pigeon pea biochar) greater than the amount of exchangeable cations. The CEC values of biochar increased from 10.8 cmol/Kg carbon to 119.6 cmol/Kg carbon. These values are smaller than reported CEC values of soil organic carbon.
生物炭是通过有机物热解产生的,带负电荷,因此有助于阳离子的静电吸附。然而,由于其多孔结构和碱性灰分的含量,测定阳离子交换容量(CEC)具有挑战性。文献中生物炭的 CEC 值差异很大,且往往重现性差,这表明存在方法学问题。在这里,我们修改并批判性地评估了现有的乙酸铵(NHOAc)方法(pH 7)中不同步骤的有效性,在该方法中,用氯化钾(KCl)取代铵(NH),在用异丙醇去除过量的 NHOAc 后,以批处理模式进行。我们使用 pigeon pea 生物炭来开发该方法,并在另外三种具有不同中和能力的生物炭上进行了测试。我们引入了生物炭的预处理步骤,使用稀盐酸将生物炭的 pH 降低到接近中性,以便 1 M 的 NHOAc 能够有效地将生物炭悬浮液的 pH 缓冲在 7。这使得所有生物炭的 CEC 都可以在 pH 7 下测定,这对于生物炭的比较至关重要。灰分的溶解可能会导致相对较大的重量损失(例如,可可壳生物炭),在计算原始生物炭的 CEC 时需要考虑到这一点。NHOAC 可提取的基础阳离子的总和比 KCl 可提取的 NH 提供了对 CEC 的更小且更好的估计。我们假设,基于 KCl 可提取的 NH 对 CEC 的高估是由于相对较大的异丙醇分子在富含微孔的生物炭中去除过量的 NHOAc 的效果不佳,这是由于尺寸排阻造成的。预处理中去除的基础阳离子的量约为交换性阳离子的三(稻壳生物炭)到十倍(pigeon pea 生物炭)。生物炭的 CEC 值从 10.8 cmol/Kg 碳增加到 119.6 cmol/Kg 碳。这些值小于报告的土壤有机碳的 CEC 值。