Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, 300 E Superior, Ste. 15-703, Chicago, IL 60611, United States.
Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Hospital Medicine, 211 E Ontario, Ste. 700, Chicago, IL 60611, United States.
J Diabetes Complications. 2018 Jul;32(7):650-654. doi: 10.1016/j.jdiacomp.2018.05.004. Epub 2018 May 8.
This study validated enterprise data warehouse (EDW) data for a cohort of hospitalized patients with a primary diagnosis of diabetic ketoacidosis (DKA).
247 patients with 319 admissions for DKA (ICD-9 code 250.12, 250.13, or 250.xx with biochemical criteria for DKA) were admitted to Northwestern Memorial Hospital from 1/1/2010 to 9/1/2013. Validation was performed by electronic medical record (EMR) review of 10% of admissions (N = 32). Classification of diabetes type (Type 1 vs. Type 2) and DKA clinical status were compared between the EMR review and EDW data.
Key findings included incorrect classification of diabetes type in 5 of 32 (16%) admissions and indeterminable classification in 5 admissions. DKA was not present, based on the review, in 11 of 32 (34%) admissions. DKA was not present, based on biochemical criteria, in 15 of 32 (47%) admissions.
This study found that EDW data have substantial errors. Some discrepancies can be addressed by refining the EDW query code, while others, related to diabetes classification and DKA diagnosis, cannot be corrected without improving clinical coding accuracy, consistency of medical record documentation, or EMR design. These results support the need for comprehensive validation of data for complex clinical populations obtained through data repositories such as the EDW.
本研究对一组以糖尿病酮症酸中毒(DKA)为主要诊断的住院患者的企业数据仓库(EDW)数据进行了验证。
2010 年 1 月 1 日至 2013 年 9 月 1 日,247 例 DKA 患者(ICD-9 编码 250.12、250.13 或 250.xx,伴有 DKA 的生化标准)被收入西北纪念医院。通过对 10%的入院病例(N=32)进行电子病历(EMR)回顾进行验证。对 EMR 回顾和 EDW 数据进行了糖尿病类型(1 型与 2 型)和 DKA 临床状态的分类比较。
主要发现包括 32 例入院病例中的 5 例(16%)存在糖尿病类型分类错误,5 例存在不确定分类。根据回顾,32 例入院病例中的 11 例(34%)不存在 DKA。根据生化标准,32 例入院病例中的 15 例(47%)不存在 DKA。
本研究发现 EDW 数据存在大量错误。一些差异可以通过改进 EDW 查询代码来解决,而其他与糖尿病分类和 DKA 诊断相关的差异,如果不提高临床编码准确性、病历记录的一致性或 EMR 设计,则无法纠正。这些结果支持需要对通过 EDW 等数据存储库获得的复杂临床人群的数据进行全面验证。