Suppr超能文献

广义弹性网络模型在生物分子大构象变化研究中的应用。

Generalization of the elastic network model for the study of large conformational changes in biomolecules.

机构信息

Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.

出版信息

Phys Chem Chem Phys. 2018 Jun 27;20(25):17020-17028. doi: 10.1039/c8cp03086c.

Abstract

The elastic network (EN) is a prime model that describes the long-time dynamics of biomolecules. However, the use of harmonic potentials renders this model insufficient for studying large conformational changes of proteins (e.g. stretching of proteins, folding and thermal unfolding). Here, we extend the capabilities of the EN model by using a harmonic approximation described by Lennard-Jones (LJ) interactions for far contacts and native contacts obtained from the standard overlap criterion as in the case of Gō-like models. While our model is validated against the EN model by reproducing the equilibrium properties for a number of proteins, we also show that the model is suitable for the study of large conformation changes by providing various examples. In particular, this is illustrated on the basis of pulling simulations that predict with high accuracy the experimental data on the rupture force of the studied proteins. Furthermore, in the case of DDFLN4 protein, our pulling simulations highlight the advantages of our model with respect to Gō-like approaches, where the latter fail to reproduce previous results obtained by all-atom simulations that predict an additional characteristic peak for this protein. In addition, folding simulations of small peptides yield different folding times for α-helix and β-hairpin, in agreement with experiment, in this way providing further opportunities for the application of our model in studying large conformational changes of proteins. In contrast to the EN model, our model is suitable for both normal mode analysis and molecular dynamics simulation. We anticipate that the proposed model will find applications in a broad range of problems in biology, including, among others, protein folding and thermal unfolding.

摘要

弹性网络(EN)是描述生物分子长时间动力学的主要模型。然而,由于使用了调和势,该模型对于研究蛋白质的大构象变化(例如蛋白质的拉伸、折叠和热解折叠)不够充分。在这里,我们通过使用莱纳德-琼斯(LJ)相互作用的调和近似来扩展 EN 模型的功能,这种近似适用于远接触,而对于天然接触,则采用标准重叠标准获得,就像 Gō 模型一样。虽然我们的模型通过再现多种蛋白质的平衡特性来验证 EN 模型,但我们还表明,该模型适用于大构象变化的研究,通过提供各种示例来证明这一点。特别是,通过拉拔模拟来展示这一点,这些模拟可以非常准确地预测研究蛋白质的断裂力的实验数据。此外,在 DDFLN4 蛋白的情况下,我们的拉拔模拟突出了我们的模型相对于 Gō 模型的优势,后者无法重现之前由全原子模拟获得的结果,这些结果预测该蛋白质会出现额外的特征峰。此外,对于α-螺旋和β-发夹的小肽折叠模拟,我们的模型预测的折叠时间与实验结果一致,这为我们的模型在研究蛋白质的大构象变化方面提供了更多的应用机会。与 EN 模型不同,我们的模型既适合正常模式分析,也适合分子动力学模拟。我们预计,所提出的模型将在生物学的广泛问题中得到应用,包括蛋白质折叠和热解折叠等。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验