Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street No 141/143, 90-236 Lodz, Poland.
Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street No 141/143, 90-236 Lodz, Poland.
Exp Mol Pathol. 2018 Aug;105(1):98-109. doi: 10.1016/j.yexmp.2018.06.002. Epub 2018 Jun 23.
Since the first identification of fullerenes (C) and their synthesis in 1985, those compounds have been extensively studied in the biomedical field. In particular, their water-soluble derivatives, fullerenols (C(OH) n = 2-48), have recently been the subject of numerous investigations concerning their antioxidant and prooxidant properties in biological systems. A small fraction of that research has focused on the possible use of C and C(OH) in neuroscience and the therapy of pathologies such as dementia, amyloid-β (Aβ) formation, and Parkinson's disease. However, only a few studies have focused on their direct effects on neuronal network viability and excitability, especially with the use of electrophysiological and electrochemical approaches. Therefore, we addressed the issue of the direct effect of hydroxylated fullerene nanoparticles C(OH) on local field potentials at the hippocampal formation (HPC) level. With the use of in vitro hippocampal formation slices as a stable model of inducing theta oscillations, and an in vivo model of an anesthetized rat, herein we provide the first convergent electropharmacological evidence that C(OH) at relatively high concentrations (60 μM and 80 μM in vitro; 0.2 μg/μl in vivo) is capable of attenuating the amplitude, power, and frequency of theta oscillations in the HPC neuronal network. At the same time, lower concentrations did not induce any apparent changes. Theta band oscillations constitute a key physiological phenotypic property, which served here as a sensitive assay enabling the study of neural network excitability. Moreover, we report that C(OH) at the concentrations of 60 μM and 80 μM is capable of producing epilepsy in the HPC in vitro, which suggests that C(OH), when applied at higher doses, may have a deleterious effect on the functioning of neuronal networks.
自 1985 年首次鉴定富勒烯(C)及其合成以来,这些化合物在生物医学领域得到了广泛研究。特别是,它们的水溶性衍生物富勒醇(C(OH) n = 2-48),最近成为众多关于其在生物系统中抗氧化和促氧化剂特性的研究主题。其中一小部分研究集中在 C 和 C(OH) 在神经科学中的可能用途,以及治疗痴呆、淀粉样β(Aβ)形成和帕金森病等疾病。然而,只有少数研究集中在它们对神经元网络活力和兴奋性的直接影响上,特别是使用电生理学和电化学方法。因此,我们研究了羟基化富勒烯纳米粒子 C(OH)对海马结构(HPC)水平局部场电位的直接影响。使用体外海马结构切片作为诱导θ振荡的稳定模型,以及麻醉大鼠的体内模型,本文提供了第一个会聚电药理学证据,表明 C(OH) 在相对较高的浓度(体外 60 μM 和 80 μM;体内 0.2 μg/μl)下能够减弱 HPC 神经元网络中θ振荡的幅度、功率和频率。同时,较低的浓度没有引起任何明显的变化。θ带振荡是一种关键的生理表型特性,在这里作为一种敏感的测定方法,用于研究神经网络的兴奋性。此外,我们报告 C(OH) 在 60 μM 和 80 μM 的浓度下能够在体外的 HPC 中产生癫痫,这表明 C(OH) 在较高剂量下应用时可能对神经元网络的功能产生有害影响。