Zhao Qi, Zhang Boxue, Wang Jingjing, Feng Wenquan, Jia Wenyan, Sun Mingui
School of Electronic and Information Engineering, Beihang University, Beijing, China.
Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA.
Int J Distrib Sens Netw. 2017 Apr;13(4). doi: 10.1177/1550147717702914. Epub 2017 Apr 10.
Step length estimation is an important issue in areas such as gait analysis, sport training, or pedestrian localization. In this article, we estimate the step length of walking using a waist-worn wearable computer named eButton. Motion sensors within this device are used to record body movement from the trunk instead of extremities. Two signal-processing techniques are applied to our algorithm design. The direction cosine matrix transforms vertical acceleration from the device coordinates to the topocentric coordinates. The empirical mode decomposition is used to remove the zero- and first-order skew effects resulting from an integration process. Our experimental results show that our algorithm performs well in step length estimation. The effectiveness of the direction cosine matrix algorithm is improved from 1.69% to 3.56% while the walking speed increased.
步长估计在步态分析、运动训练或行人定位等领域是一个重要问题。在本文中,我们使用一款名为eButton的腰部可穿戴计算机来估计步行的步长。该设备内的运动传感器用于记录来自躯干而非四肢的身体运动。两种信号处理技术被应用于我们的算法设计。方向余弦矩阵将设备坐标系中的垂直加速度转换为地心地固坐标系中的垂直加速度。经验模态分解用于消除积分过程产生的零阶和一阶倾斜效应。我们的实验结果表明,我们的算法在步长估计方面表现良好。随着步行速度的增加,方向余弦矩阵算法的有效性从1.69%提高到了3.56%。