Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America.
J. Craig Venter Institute, La Jolla, California, United States of America.
PLoS One. 2018 Jun 19;13(6):e0199125. doi: 10.1371/journal.pone.0199125. eCollection 2018.
The photosynthetic quantum yield (Φ), defined as carbon fixed or oxygen evolved per unit of light absorbed, is a fundamental but rarely determined biophysical parameter. A method to estimate Φ for both net carbon uptake and net oxygen evolution simultaneously can provide important insights into energy and mass fluxes. Here we present details for a novel system that allows quantification of carbon fluxes using pH oscillation and simultaneous oxygen fluxes by integration with a membrane inlet mass spectrometer. The pHOS system was validated using Phaeodactylum tricornutum cultured with continuous illumination of 110 μmole quanta m-2 s-1 at 25°C. Furthermore, simultaneous measurements of carbon and oxygen flux using the pHOS-MIMS and photon flux based on spectral absorption were carried out to explore the kinetics of Φ in P. tricornutum during its acclimation from low to high light (110 to 750 μmole quanta m-2 s-1). Comparing results at 0 and 24 hours, we observed strong decreases in cellular chlorophyll a (0.58 to 0.21 pg cell-1), Fv/Fm (0.71 to 0.59) and maximum ΦCO2 (0.019 to 0.004) and ΦO2 (0.028 to 0.007), confirming the transition toward high light acclimation. The Φ time-series indicated a non-synchronized acclimation response between carbon uptake and oxygen evolution, which has been previously inferred based on transcriptomic changes for a similar experimental design with the same diatom that lacked physiological data. The integrated pHOS-MIMS system can provide simultaneous carbon and oxygen measurements accurately, and at the time-resolution required to resolve high-resolution carbon and oxygen physiological dynamics.
光合作用量子产率(Φ)定义为单位光吸收所固定的碳或释放的氧,是一个基本但很少确定的生物物理参数。一种同时估计净碳吸收和净氧释放的Φ的方法可以提供对能量和物质通量的重要见解。在这里,我们介绍了一种新系统的详细信息,该系统允许使用 pH 振荡和与膜入口质谱仪集成同时量化碳通量和氧通量。使用在 25°C 下以 110 μmole quanta m-2 s-1 的连续光照培养的菱形藻(Phaeodactylum tricornutum)验证了 pHOS 系统。此外,使用 pHOS-MIMS 和基于光谱吸收的光子通量同时进行碳和氧通量的测量,以探索菱形藻在从低光到高光(110 到 750 μmole quanta m-2 s-1)适应过程中的Φ动力学。比较 0 和 24 小时的结果,我们观察到细胞叶绿素 a(0.58 至 0.21 pg cell-1)、Fv/Fm(0.71 至 0.59)和最大ΦCO2(0.019 至 0.004)和ΦO2(0.028 至 0.007)的强烈下降,证实了向高光适应的转变。Φ 时间序列表明,在碳吸收和氧释放之间存在非同步的适应响应,这在先前基于相同的硅藻进行的类似实验设计的转录组变化的基础上进行了推断,但缺乏生理数据。集成的 pHOS-MIMS 系统可以提供准确的同时碳和氧测量,并以分辨率要求分辨率解决高分辨率碳和氧生理动力学。